Robust photopolymerized superoleophobic/superhydrophilic mesh for oil-water separation

被引:0
|
作者
Wang, Jian [1 ,2 ,3 ]
Li, Feiran [1 ,2 ]
Pan, Yunlu [1 ,2 ]
Chen, Fang [1 ,2 ]
Huang, Cong [1 ,2 ]
Zhao, Xuezeng [1 ,2 ]
机构
[1] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150001, Peoples R China
[3] Heilongjiang East Univ, Sch Mechatron Engn, Harbin 150066, Peoples R China
关键词
Superoleophobic/superhydrophilic; Robust; Durable; Oil-water separation; OIL/WATER SEPARATION; RATIONAL DESIGN; SUPERHYDROPHILICITY; SUPEROLEOPHOBICITY; SURFACE;
D O I
10.1016/j.colsurfa.2024.134892
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Selective superwetting surfaces preserve the opposite superwetting properties of oil and water and have attracted considerable attention for their application in oil-water separation owing to their efficient surface energy since 2000. Among these surfaces, superoleophobic/superhydrophilic surfaces are considered remarkable because of their anti-oil properties. The coexistence of superoleophobicity and superhydrophilicity poses a challenge based on the traditional surface/interface theory. However, the fabrication of superoleophobic surfaces requires extremely low surface energy, which is achieved by introducing compounds with long fluorocarbon chains. However, these compounds are harmful to the environment. Herein, a mesh with superoleophobic/superhydrophilic properties was developed by coating a chemically etched copper mesh substrate with photopolymerized short fluorocarbon chains and water-insoluble hydrophilic monomers. This mesh can separate different types of oil-water mixtures with a separation efficiency of >99 %. The mesh demonstrated excellent underwater stability as well as chemical and mechanical durability. The water resistance and chemical durability of the mesh are stronger than those of the control copper mesh using metal ions and long fluorocarbon chains. Moreover, oil-water separation was achieved even after immersion in deionized water and salt, acid, and alkali solutions. In addition, the mesh preserves the ability of oil-water separation after being cleaned and reused for 10 times. The proposed superoleophobic/superhydrophilic mesh offers a solution for continuous oil-water separa- tion and has prospects for developing anti-fouling/sweat-absorbing fabrics and self-cleaning surfaces.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux
    Jiawei Wang
    Jie Hu
    Junjie Cheng
    Zefei Huang
    Baoqian Ye
    Frontiers of Chemical Science and Engineering, 2023, 17 : 46 - 55
  • [32] Fabrication of a superhydrophilic/underwater superoleophobic stainless steel mesh for oil/water separation with ultrahigh flux
    Wang, Jiawei
    Hu, Jie
    Cheng, Junjie
    Huang, Zefei
    Ye, Baoqian
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2023, 17 (01) : 46 - 55
  • [33] Superhydrophilic/Superoleophobic Mesh/Chitosan-MnO2 Membrane for Robust and Highly Efficient Separation of Oil-in-Water Emulsions
    Fatemeh Elmi
    Fatemeh Hosseini Valookolaee
    Mojtaba Shokrollahzadeh Taleshi
    Water, Air, & Soil Pollution, 2023, 234
  • [34] Superhydrophilic/Superoleophobic Mesh/Chitosan-MnO2 Membrane for Robust and Highly Efficient Separation of Oil-in-Water Emulsions
    Elmi, Fatemeh
    Valookolaee, Fatemeh Hosseini
    Taleshi, Mojtaba Shokrollahzadeh
    WATER AIR AND SOIL POLLUTION, 2023, 234 (11):
  • [35] Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification
    Zhu, Meng
    Liu, Yucheng
    Chen, Mingyan
    Sadrzadeh, Mohtada
    Xu, Zhiheng
    Gan, Dong
    Huang, Zhi
    Ma, Lili
    Yang, Bing
    Zhou, Ying
    JOURNAL OF MEMBRANE SCIENCE, 2021, 640
  • [36] Superhydrophilic and Underwater Superoleophobic Cotton Fabric for Oil-Water Separation and Removal of Heavy-Metal Ion
    Li, Xiaohong
    Chen, Ying
    Chen, Yong
    Chen, Dong
    Wang, Quan
    Wang, Yan
    ACS OMEGA, 2022, 7 (34): : 30184 - 30196
  • [37] Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation
    Yuan, Jing
    Liao, Fangfang
    Guo, Yani
    Liang, Liyun
    PROGRESS IN CHEMISTRY, 2019, 31 (01) : 144 - 155
  • [38] Modified superhydrophilic/underwater superoleophobic mullite fiber-based porous ceramic for oil-water separation
    Yuan, Lei
    Wen, Tianpeng
    Jiang, Linyang
    Liu, Zhenli
    Tian, Chen
    Yu, Jingkun
    Materials Research Bulletin, 2021, 143
  • [39] Rational Design of Superhydrophilic/Superoleophobic Surfaces for Oil-Water Separation via Thiol-Acrylate Photopolymerization
    Xiong, Li
    Guo, Wei
    Alameda, Benjamin M.
    Sloan, Reese K.
    Walker, William D.
    Patton, Derek L.
    ACS OMEGA, 2018, 3 (08): : 10278 - 10285
  • [40] Superhydrophilic and Underwater Superoleophobic Poly(sulfobetaine methacrylate)-Grafted Glass Fiber Filters for Oil-Water Separation
    Liu, Qingsheng
    Patel, Ankit A.
    Liu, Lingyun
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (12) : 8996 - 9003