Global Feature-Injected Blind-Spot Network for Hyperspectral Anomaly Detection

被引:2
|
作者
Wang, Degang [1 ,2 ]
Zhuang, Lina [3 ]
Gao, Lianru [3 ]
Sun, Xu [3 ]
Zhao, Xiaobin [4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Optic Imaging Technol, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Beijing Inst Technol, Sch Informat & Elect, Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Blind-spot network; deep learning (DL); hyper-spectral images (HSIs); self-supervised learning;
D O I
10.1109/LGRS.2024.3449635
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral anomaly detection (HAD) poses the challenge of distinguishing anomalous targets from the majority of background objects without prior knowledge. Most existing deep learning (DL) models struggle to account for both local and global spatial-spectral features in the image, limiting their performance. In this letter, we introduce PUNNet, which integrates the patch-shuffle downsampling technique and nonlinear activation-free network (NAFNet) block with dilated convolution into an advanced blind-spot network for HAD. Specifically, PUNNet utilizes the patch-shuffle downsampling operation to extend its receptive field and exploits channel attention in the NAFNet block with dilated convolution to capture global contextual information in the image. Meanwhile, PUNNet satisfies the blind-spot requirement, meaning its receptive field excludes the center pixel's information. This allows for reliable and precise background reconstruction in a self-supervised learning paradigm, further weakening anomalous feature expression and increasing the reconstruction error of anomalies. Experimental results demonstrate that PUNNet achieves a leading position in HAD performance. The code is available at https://github.com/DegangWang97/IEEE_GRSL_PUNNet.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Hyperspectral Anomaly Detection Using Enhanced Global Factors
    Paciencia, Todd J.
    Bauer, Kenneth W., Jr.
    AUTOMATIC TARGET RECOGNITION XXVI, 2016, 9844
  • [22] Kernel ICA Feature Extraction for Anomaly Detection in Hyperspectral Imagery
    Zhao Chunhui
    Wang Yulei
    Mei Feng
    CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (02): : 265 - 269
  • [23] Spectral Adversarial Feature Learning for Anomaly Detection in Hyperspectral Imagery
    Xie, Weiying
    Liu, Baozhu
    Li, Yunsong
    Lei, Jie
    Chang, Chein-, I
    He, Gang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2352 - 2365
  • [24] Unsupervised spectral mapping and feature selection for hyperspectral anomaly detection
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    Yang, Jian
    Li, Jiaojiao
    Jia, Xiuping
    Li, Zhen
    NEURAL NETWORKS, 2020, 132 : 144 - 154
  • [25] Blind-Spot Collision Detection System for Commercial Vehicles Using Multi Deep CNN Architecture
    Muzammel, Muhammad
    Yusoff, Mohd Zuki
    Mohamad Saad, Mohamad Naufal
    Sheikh, Faryal
    Awais, Muhammad Ahsan
    SENSORS, 2022, 22 (16)
  • [26] SPECTRAL FEATURE LEARNING FOR ANOMALY CHANGE DETECTION IN HYPERSPECTRAL IMAGE
    Xie, Wen
    Ren, Wen
    Wu, Qinzhe
    Sun, Hongyue
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7419 - 7422
  • [27] Hyperspectral Anomaly Detection Based on Spectral Similarity Variability Feature
    Li, Xueyuan
    Shang, Wenjing
    SENSORS, 2024, 24 (17)
  • [28] Spectral-Spatial Feature Fusion for Hyperspectral Anomaly Detection
    Liu, Shaocong
    Li, Zhen
    Wang, Guangyuan
    Qiu, Xianfei
    Liu, Tinghao
    Cao, Jing
    Zhang, Donghui
    SENSORS, 2024, 24 (05)
  • [29] Spectral-Spatial Feature Extraction for Hyperspectral Anomaly Detection
    Lei, Jie
    Xie, Weiying
    Yang, Jian
    Li, Yunsong
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 8131 - 8143
  • [30] Anomaly target detection for hyperspectral imagery based on orthogonal feature
    Gan, Yuquan
    Li, Lei
    Liu, Ying
    Yi, Chen
    Zhang, Ji
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (04)