Painlevé analysis of the resonant third-order nonlinear Schrödinger equation

被引:6
|
作者
Kudryashov, Nikolay A. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
基金
俄罗斯科学基金会;
关键词
Resonant third-order nonlinear Schr & ouml; dinger; equation; Painlev & eacute; test; Integrability; Solitary and periodic wave; SCHRODINGER-EQUATION; SOLITON-SOLUTIONS; OPTICAL SOLITONS; PROPAGATION; PULSE;
D O I
10.1016/j.aml.2024.109232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The resonant Schr & ouml;dinger equation of the third order is studied. The Painlev & eacute; test for nonlinear partial differential equations is used to determine integrability of equation. It is shown that the necessary condition for integrability of partial differential equations by the inverse scattering transform is fulfilled at certain parameter restriction. Analytical solutions in the form of periodic and solitary wave are presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] INVARIANTS OF NONLINEAR DIFFERENTIAL EQUATION OF THIRD-ORDER
    BANDIC, I
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (01): : 77 - &
  • [42] Exact Solutions of the Generalized Third-Order Nonlinear Schrödinger Equation Using the Trial Equation Method and the Complete Discriminant System for Polynomial Method with Applications in Optical Fibers
    Na Sun
    Yuxue Wang
    International Journal of Applied and Computational Mathematics, 2025, 11 (2)
  • [43] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [44] Interaction of coupled higher order nonlinear Schrödinger equation solitons
    A. Borah
    S. Ghosh
    S. Nandy
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 221 - 225
  • [45] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [46] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [47] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [48] Energy preserving model order reduction of the nonlinear Schrödinger equation
    Bülent Karasözen
    Murat Uzunca
    Advances in Computational Mathematics, 2018, 44 : 1769 - 1796
  • [49] Factorization technique for the fourth-order nonlinear Schrödinger equation
    Nakao Hayashi
    Pavel I. Naumkin
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2343 - 2377
  • [50] Periodic Waves of a Discrete Higher Order Nonlinear Schrdinger Equation
    Robert Contete
    K.W. Chow
    CommunicationsinTheoreticalPhysics, 2006, 46 (12) : 961 - 965