A mesoscale eddy reconstruction method based on generative adversarial networks

被引:2
|
作者
Ma, Xiaodong [1 ]
Zhang, Lei [2 ]
Xu, Weishuai [1 ]
Li, Maolin [2 ]
Zhou, Xingyu [1 ]
机构
[1] Dalian Naval Acad, Student Team 5, Dalian, Peoples R China
[2] Dalian Naval Acad, Dept Mil Oceanog & Hydrog & Cartog, Dalian, Peoples R China
关键词
GAN; mesoscale eddy; convergence zone; JCOPE2M; reconstruction; EDDIES; WARM;
D O I
10.3389/fmars.2024.1411779
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mesoscale eddies are phenomena that widely exist in the ocean and have a significant impact on the ocean's temperature and salt structure, as well as on acoustic propagation effects. Currently, utilizing the limited data on mesoscale eddy environments for refined acoustic field reconstruction in offshore conditions at mid-to-far-ocean distances is an urgent problem that needs to be addressed. In this paper, we propose a mesoscale eddy reconstruction method (EddyGAN) based on the generative adversarial network (GAN) model which is inspired by the concept of global localization. We adopt a hybrid algorithm for eddy identification using JCOPE2M high-resolution reanalysis data and Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) satellite altimeter data to extract mesoscale eddy sound speed profile (SSP) sample data, and then apply the EddyGAN model to train this dataset and perform mesoscale eddy acoustic field reconstruction. We also propose an evaluation method for mesoscale eddy acoustic field reconstruction that uses RMSE, SSIM, and convergence zone (CZ) accuracy based on World Ocean Atlas (WOA) climate state data completion as indicators. The reconstruction result of this model achieves an RMSE of 1.7 m/s, an SSIM of 0.77, and an average CZ accuracy of over 70%. This method better characterizes the mesoscale eddy sound field than the native GAN and other reconstruction methods, improves the accuracy of mesoscale eddy acoustic field reconstruction, and provides superior performance, offering significant reference value for mesoscale eddy reconstruction technology and subsequent ocean acoustic research.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] AN ACCURATE SALIENCY PREDICTION METHOD BASED ON GENERATIVE ADVERSARIAL NETWORKS
    Yan, Bing
    Wang, Haoqian
    Wang, Xingzheng
    Zhang, Yongbing
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2339 - 2343
  • [22] Image Retrieval Based on Hash Method and Generative Adversarial Networks
    Peng Yanfei
    Hong, Wu
    Zi Lingling
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (10)
  • [23] An improved infrared simulation method based on generative adversarial networks
    Lyu, Xiaoyong
    Jia, Tenglin
    Liu, Yinghao
    Shan, Peng
    Li, Lianjiang
    Zhao, Yuliang
    INFRARED PHYSICS & TECHNOLOGY, 2024, 140
  • [24] A Helium Speech Correction Method Based on Generative Adversarial Networks
    Li, Hongjun
    Chen, Yuxiang
    Ji, Hongwei
    Zhang, Shibing
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (11)
  • [25] Reconstruction of Asphalt Nanostructures via Generative Adversarial Networks
    Aljarrah, Mohammad
    Karaki, Ayman
    Masad, Eyad
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (08)
  • [26] Stochastic Reconstruction of an Oolitic Limestone by Generative Adversarial Networks
    Lukas Mosser
    Olivier Dubrule
    Martin J. Blunt
    Transport in Porous Media, 2018, 125 : 81 - 103
  • [27] Stochastic Reconstruction of an Oolitic Limestone by Generative Adversarial Networks
    Mosser, Lukas
    Dubrule, Olivier
    Blunt, Martin J.
    TRANSPORT IN POROUS MEDIA, 2018, 125 (01) : 81 - 103
  • [28] FPGA Acceleration of Generative Adversarial Networks for Image Reconstruction
    Danopoulos, Dimitrios
    Anagnostopoulos, Konstantinos
    Kachris, Christoforos
    Soudris, Dimitrios
    2021 10TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2021,
  • [29] A Services Classification Method Based on Heterogeneous Information Networks and Generative Adversarial Networks
    Xie, Xiang
    Liu, Jianxun
    Cao, Buqing
    Peng, Mi
    Kang, Guosheng
    Wen, Yiping
    Fletcher, Kenneth K.
    INTERNATIONAL JOURNAL OF WEB SERVICES RESEARCH, 2023, 20 (01)
  • [30] Super-Resolution Reconstruction of Cell Images Based on Generative Adversarial Networks
    Pan, Bin
    Du, Yifeng
    Guo, Xiaoming
    IEEE ACCESS, 2024, 12 : 72252 - 72263