Cardiac ultrasomics for acute myocardial infarction risk stratification and prediction of all-cause mortality: a feasibility study

被引:1
|
作者
Hathaway, Quincy A. [1 ,2 ]
Jamthikar, Ankush D. [1 ]
Rajiv, Nivedita [1 ]
Chaitman, Bernard R. [3 ]
Carson, Jeffrey L. [4 ]
Yanamala, Naveena [1 ]
Sengupta, Partho P. [1 ,5 ]
机构
[1] Rutgers Robert Wood Johnson Med Sch, Dept Med, Div Cardiovasc Dis & Hypertens, New Brunswick, NJ 08901 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA USA
[3] St Louis Univ, Sch Med, Dept Med, St Louis, MO USA
[4] Rutgers Robert Wood Johnson Med Sch, Dept Med, Div Gen Internal Med, New Brunswick, NJ USA
[5] Rutgers Robert Wood Johnson Med Sch, Div Cardiovasc Dis & Hypertens, 125 Patterson St, New Brunswick, NJ 08901 USA
来源
ECHO RESEARCH AND PRACTICE | 2024年 / 11卷 / 01期
关键词
Topology; TDA; Semantic segmentation; Ultrasomics; Machine learning; RADIOMICS; VALIDATION; TEXTURE; SYSTEM; MODEL;
D O I
10.1186/s44156-024-00057-w
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Current risk stratification tools for acute myocardial infarction (AMI) have limitations, particularly in predicting mortality. This study utilizes cardiac ultrasound radiomics (i.e., ultrasomics) to risk stratify AMI patients when predicting all-cause mortality. Results The study included 197 patients: (a) retrospective internal cohort (n = 155) of non-ST-elevation myocardial infarction (n = 63) and ST-elevation myocardial infarction (n = 92) patients, and (b) external cohort from the multicenter Door-To-Unload in ST-segment-elevation myocardial infarction [DTU-STEMI] Pilot Trial (n = 42). Echocardiography images of apical 2, 3, and 4-chamber were processed through an automated deep-learning pipeline to extract ultrasomic features. Unsupervised machine learning (topological data analysis) generated AMI clusters followed by a supervised classifier to generate individual predicted probabilities. Validation included assessing the incremental value of predicted probabilities over the Global Registry of Acute Coronary Events (GRACE) risk score 2.0 to predict 1-year all-cause mortality in the internal cohort and infarct size in the external cohort. Three phenogroups were identified: Cluster A (high-risk), Cluster B (intermediate-risk), and Cluster C (low-risk). Cluster A patients had decreased LV ejection fraction (P < 0.01) and global longitudinal strain (P = 0.03) and increased mortality at 1-year (log rank P = 0.05). Ultrasomics features alone (C-Index: 0.74 vs. 0.70, P = 0.04) and combined with global longitudinal strain (C-Index: 0.81 vs. 0.70, P < 0.01) increased prediction of mortality beyond the GRACE 2.0 score. In the DTU-STEMI clinical trial, Cluster A was associated with larger infarct size (> 10% LV mass, P < 0.01), compared to remaining clusters. Conclusions Ultrasomics-based phenogroup clustering, augmented by TDA and supervised machine learning, provides a novel approach for AMI risk stratification.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] All-cause mortality and mortality of myocardial infarction for 989 legally castrated men
    von Eyben, FE
    Graugaard, C
    Vaeth, M
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2005, 20 (10) : 863 - 869
  • [22] Risk of a first-ever acute myocardial infarction and all-cause mortality with sulphonylurea treatment: A population-based cohort study
    van Dalem, Judith
    Brouwers, Martijn C. G. J.
    Stehouwer, Coen D. A.
    Krings, Andre
    Klungel, Olaf H.
    Driessen, Johanna H. M.
    de Vries, Frank
    Burden, Andrea M.
    DIABETES OBESITY & METABOLISM, 2018, 20 (04): : 1056 - 1060
  • [23] QT Interval and the Risk of Myocardial Infarction and All-Cause Death: A Cohort Study
    Lindekleiv, Haakon
    Wilsgaard, Tom
    Macfarlane, Peter W.
    Lochen, Maja-Lisa
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2012, 23 (08) : 846 - 852
  • [24] Adiponectin is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction in patients presenting with chest pain
    Cavusoglu, Erdal
    Ruwende, Cyril
    Chopra, Vineet
    Yanamadala, Sunitha
    Eng, Calvin
    Clark, Luther T.
    Pinsky, David J.
    Marmur, Jonathan D.
    EUROPEAN HEART JOURNAL, 2006, 27 (19) : 2300 - 2309
  • [25] Pulse pressure on admission after acute myocardial infarction predicts all-cause and arrhythmic mortality
    Yap, YG
    Duong, T
    Bland, M
    Malik, M
    Torp-Pederson, C
    Connolly, S
    Roberts, R
    Marchant, B
    Camm, AJ
    EUROPEAN HEART JOURNAL, 2000, 21 : 490 - 490
  • [26] Adherence Tradeoff to Multiple Preventive Therapies and All-Cause Mortality After Acute Myocardial Infarction
    Korhonen, Maarit J.
    Robinson, Jennifer G.
    Annis, Izabela E.
    Hickson, Ryan P.
    Bell, J. Simon
    Hartikainen, Juha
    Fang, Gang
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 70 (13) : 1543 - 1554
  • [27] Pregnancy Loss and the Risk of Myocardial Infarction, Stroke, and All-Cause Mortality: A Nationwide Partner Comparison Cohort Study
    Mikkelsen, Anders Pretzmann
    Egerup, Pia
    Kolte, Astrid Marie
    Westergaard, David
    Torp-Pedersen, Christian
    Nielsen, Henriette Svarre
    Lidegaard, Ojvind
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2023, 12 (15):
  • [28] The effect of change in fasting glucose on the risk of myocardial infarction, stroke, and all-cause mortality: a nationwide cohort study
    Gyeongsil Lee
    Sung Min Kim
    Seulggie Choi
    Kyuwoong Kim
    Su-Min Jeong
    Joung Sik Son
    Jae-Moon Yun
    Sang Min Park
    Cardiovascular Diabetology, 17
  • [29] The effect of change in fasting glucose on the risk of myocardial infarction, stroke, and all-cause mortality: a nationwide cohort study
    Lee, Gyeongsil
    Kim, Sung Min
    Choi, Seulggie
    Kim, Kyuwoong
    Jeong, Su-Min
    Son, Joung Sik
    Yun, Jae-Moon
    Park, Sang Min
    CARDIOVASCULAR DIABETOLOGY, 2018, 17
  • [30] Inpatient smoking-cessation counseling and all-cause mortality in patients with acute myocardial infarction
    Van Spall, Harriette G. C.
    Chong, Alice
    Tu, Jack V.
    AMERICAN HEART JOURNAL, 2007, 154 (02) : 213 - 220