Cardiac ultrasomics for acute myocardial infarction risk stratification and prediction of all-cause mortality: a feasibility study

被引:1
|
作者
Hathaway, Quincy A. [1 ,2 ]
Jamthikar, Ankush D. [1 ]
Rajiv, Nivedita [1 ]
Chaitman, Bernard R. [3 ]
Carson, Jeffrey L. [4 ]
Yanamala, Naveena [1 ]
Sengupta, Partho P. [1 ,5 ]
机构
[1] Rutgers Robert Wood Johnson Med Sch, Dept Med, Div Cardiovasc Dis & Hypertens, New Brunswick, NJ 08901 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA USA
[3] St Louis Univ, Sch Med, Dept Med, St Louis, MO USA
[4] Rutgers Robert Wood Johnson Med Sch, Dept Med, Div Gen Internal Med, New Brunswick, NJ USA
[5] Rutgers Robert Wood Johnson Med Sch, Div Cardiovasc Dis & Hypertens, 125 Patterson St, New Brunswick, NJ 08901 USA
来源
ECHO RESEARCH AND PRACTICE | 2024年 / 11卷 / 01期
关键词
Topology; TDA; Semantic segmentation; Ultrasomics; Machine learning; RADIOMICS; VALIDATION; TEXTURE; SYSTEM; MODEL;
D O I
10.1186/s44156-024-00057-w
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Current risk stratification tools for acute myocardial infarction (AMI) have limitations, particularly in predicting mortality. This study utilizes cardiac ultrasound radiomics (i.e., ultrasomics) to risk stratify AMI patients when predicting all-cause mortality. Results The study included 197 patients: (a) retrospective internal cohort (n = 155) of non-ST-elevation myocardial infarction (n = 63) and ST-elevation myocardial infarction (n = 92) patients, and (b) external cohort from the multicenter Door-To-Unload in ST-segment-elevation myocardial infarction [DTU-STEMI] Pilot Trial (n = 42). Echocardiography images of apical 2, 3, and 4-chamber were processed through an automated deep-learning pipeline to extract ultrasomic features. Unsupervised machine learning (topological data analysis) generated AMI clusters followed by a supervised classifier to generate individual predicted probabilities. Validation included assessing the incremental value of predicted probabilities over the Global Registry of Acute Coronary Events (GRACE) risk score 2.0 to predict 1-year all-cause mortality in the internal cohort and infarct size in the external cohort. Three phenogroups were identified: Cluster A (high-risk), Cluster B (intermediate-risk), and Cluster C (low-risk). Cluster A patients had decreased LV ejection fraction (P < 0.01) and global longitudinal strain (P = 0.03) and increased mortality at 1-year (log rank P = 0.05). Ultrasomics features alone (C-Index: 0.74 vs. 0.70, P = 0.04) and combined with global longitudinal strain (C-Index: 0.81 vs. 0.70, P < 0.01) increased prediction of mortality beyond the GRACE 2.0 score. In the DTU-STEMI clinical trial, Cluster A was associated with larger infarct size (> 10% LV mass, P < 0.01), compared to remaining clusters. Conclusions Ultrasomics-based phenogroup clustering, augmented by TDA and supervised machine learning, provides a novel approach for AMI risk stratification.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Prediction of heart failure and all-cause mortality using cardiac ultrasomics in patients with breast cancer
    Hathaway, Quincy A.
    Abdeen, Yahya
    Conte, Justin
    Hass, Rotem
    Santer, Matthew J.
    Alyami, Bandar
    Avalon, Juan Carlo
    Patel, Brijesh
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, 40 (06): : 1305 - 1317
  • [2] Serum albumin and risk of myocardial infarction and all-cause mortality in the Framingham Offspring Study
    Djoussé, L
    Rothman, KJ
    Cupples, LA
    Levy, D
    Ellison, RC
    CIRCULATION, 2002, 106 (23) : 2919 - 2924
  • [3] Genomic Risk Stratification Predicts All-Cause Mortality After Cardiac Catheterization
    Levin, Michael G.
    Kember, Rachel L.
    Judy, Renae
    Birtwell, David
    Williams, Heather
    Arany, Zolt
    Giri, Jay
    Guerraty, Marie
    Cappola, Tom
    Chen, Jinbo
    Rader, Daniel J.
    Damrauer, Scott M.
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2018, 11 (11): : e002352
  • [4] Genomic Risk Stratification Predicts All-Cause Mortality After Cardiac Catheterization
    Levin, Michael
    Kember, Rachel
    Judy, Renae
    Birtwell, David
    Williams, Heather
    Giri, Jay
    Cappola, Tom
    Rader, Daniel
    Damrauer, Scott
    CIRCULATION, 2018, 138
  • [5] Prediction of Cardiovascular and All-Cause Mortality After Myocardial Infarction in US Veterans
    Lu, Bing
    Posner, Daniel
    Vassy, Jason L.
    Ho, Yuk-Lam
    Galloway, Ashley
    Raghavan, Sridharan
    Honerlaw, Jacqueline
    Tarko, Laura
    Russo, John
    Qazi, Saadia
    Orkaby, Ariela R.
    Tanukonda, Vidisha
    Djousse, Luc
    Gaziano, J. Michael
    Gagnon, David R.
    Cho, Kelly
    Wilson, Peter W. F.
    AMERICAN JOURNAL OF CARDIOLOGY, 2022, 169 : 10 - 17
  • [6] Changes in Traffic Exposure and the Risk of Incident Myocardial Infarction and All-Cause Mortality
    Hart, Jaime E.
    Rimm, Eric B.
    Rexrode, Kathryn M.
    Laden, Francine
    EPIDEMIOLOGY, 2013, 24 (05) : 734 - 742
  • [7] Base excess is associated with the risk of all-cause mortality in critically ill patients with acute myocardial infarction
    Luo, Chaodi
    Duan, Zhenzhen
    Zheng, Tingting
    Li, Qian
    Wang, Danni
    Wang, Boxiang
    Gao, Pengjie
    Han, Dan
    Tian, Gang
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [8] Legumain is a predictor of all-cause mortality and potential therapeutic target in acute myocardial infarction
    Hui Yang
    Yuhu He
    Pu Zou
    Yilei Hu
    Xuping Li
    Liang Tang
    Zhaowei Zhu
    Shi Tai
    Tao Tu
    Yichao Xiao
    Mingxian Chen
    Chenlu Wu
    Shenghua Zhou
    Cell Death & Disease, 11
  • [9] Predictive Value of Prothrombin Time for All-cause Mortality in Acute Myocardial Infarction Patients
    Wang, Xurong
    Chen, Runge
    Li, Ye
    Miao, Fen
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5366 - 5369
  • [10] Association of baseline platelet count with all-cause mortality after acute myocardial infarction
    Song, Pil Sang
    Ahn, Kye Taek
    Jeong, Jin-Ok
    Jeon, Ki-Hyun
    Song, Young Bin
    Gwon, Hyeon-Cheol
    Rha, Seung-Woon
    Jeong, Myung Ho
    Seong, In-Whan
    EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE, 2021, 10 (02) : 176 - 183