Ultrafast High-Volumetric Sodium-Ion Capacitors Based on Compact Nanoarchitectured Carbon Electrodes

被引:1
|
作者
Fang, Yan [1 ]
Li, Li [2 ]
Li, Jinghan [1 ]
Gan, Yang [3 ,4 ]
Du, Jie [1 ]
Li, Jiaxin [1 ]
Chen, Xin [1 ]
Pan, Hui [1 ]
Zhang, Wang [1 ]
Gu, Jiajun [1 ]
Zhang, Di [1 ]
Liu, Qinglei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, CAS Ctr Excellence Nanosci, Hefei 230026, Peoples R China
[3] Fudan Univ, Dept Mat Sci, Shanghai 200438, Peoples R China
[4] Fudan Univ, Inst Optoelect, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanospheres self-assembly; electrode architecture; fast-charging capability; high volumetric capacity; sodium-ion capacitor; ENERGY-STORAGE; FABRICATION; SURFACE;
D O I
10.1002/adfm.202408568
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ultrafast carbon electrodes with high-volumetric capacities are crucial for the fast-developing sodium-ion capacitors (SICs) but have rarely been achieved due to the negative correlation between electrode density and ion transport kinetics. Here, a top-down strategy to achieve a compact carbon architecture with topological ion transport/diffusion pathways to address this obstacle is reported. The resulting freestanding carbon electrode exhibits a notable volumetric capacity of 242 mAh cm-3 at 0.05 A g-1 and unprecedented high-rate capability of 107 mAh cm-3 at 50 A g-1. It achieves an optimal balance between energy density (60.2 Wh L-1) and power density (12859 W L-1) in a SIC device. The ultrafast and high-volumetric performance is attributed to the synergistic effect of architecture-enhanced rapid ion transport/diffusion and carbon nanostructure-driven fast Na+ storage mechanisms involving adsorption/desorption, surface-redox and solvated Na+ co-intercalation reactions. The nanoarchitectured carbon electrodes show greatly improved Na+ diffusion coefficients throughout the potential range, resulting in an extremely short characteristic time (0.013 s) for fast Na+ storage. Compact electrodes of carbon nanoparticles with a pore-interconnected architecture have been fabricated by a strategy of processing bulk nanostructured precursor. The combination of nanosized active units and ion-conductive pore architecture enables fast sodium-ion transport/storage kinetics, achieving an extremely short characteristic time (0.013 s) and fast sodium-ion storage (107 mAh cm-3 at 50 A g-1). image
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
    Xianfen Wang
    Satoshi Kajiyama
    Hiroki Iinuma
    Eiji Hosono
    Shinji Oro
    Isamu Moriguchi
    Masashi Okubo
    Atsuo Yamada
    Nature Communications, 6
  • [42] Pseudocapacitive Anode Materials toward High-Power Sodium-Ion Capacitors
    Chang, Xiaoqing
    Huang, Tingyi
    Yu, Jiayu
    Li, Junbin
    Wang, Jian
    Wei, Qiulong
    BATTERIES & SUPERCAPS, 2021, 4 (10) : 1567 - 1587
  • [43] Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
    Wang, Xianfen
    Kajiyama, Satoshi
    Iinuma, Hiroki
    Hosono, Eiji
    Oro, Shinji
    Moriguchi, Isamu
    Okubo, Masashi
    Yamada, Atsuo
    NATURE COMMUNICATIONS, 2015, 6
  • [44] Coal-Based modified Carbon for High Performance Sodium-Ion Battery
    Wang, Jian
    Cui, Yongli
    Gu, Yue
    Xu, Huimin
    Shi, Yueli
    Ju, Zhicheng
    Zhuang, Quanchao
    SOLID STATE IONICS, 2021, 368
  • [45] High-volumetric pseudocapacitive sodium storage in densely packed mesoporous titanium dioxide-carbon composite
    He, Yalin
    Miao, Xin
    Wang, Wendi
    Li, Jialong
    Zhang, Jingyu
    Li, Rongyao
    Yang, Lanhao
    Liu, Lu
    Wang, Yonggang
    Guo, Ziyang
    Zhao, Dongyuan
    Lan, Kun
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (08):
  • [46] High-Efficiency Sodium-Ion Battery Based on NASICON Electrodes with High Power and Long Lifespan
    Zhang, Huang
    Qin, Bingsheng
    Buchholz, Daniel
    Passerini, Stefano
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6425 - 6432
  • [47] Ultrafast Na-Ion Storage in Amorphization Engineered Hollow Vanadium Oxide/MXene Nanohybrids for High-Performance Sodium-Ion Hybrid Capacitors
    Yuan, Jun
    Pan, Duo
    Chen, Junxiang
    Liu, Yangjie
    Yu, Jiaqi
    Hu, Xiang
    Zhan, Hongbing
    Wen, Zhenhai
    ADVANCED MATERIALS, 2024, 36 (50)
  • [48] Ultrafast Na+-storage in TiO2-coated MoS2@N-doped carbon for high-energy sodium-ion hybrid capacitors
    Li, Yuzhu
    Wang, Huanwen
    Wang, Libin
    Wang, Rui
    He, Beibei
    Gong, Yansheng
    Hu, Xianluo
    ENERGY STORAGE MATERIALS, 2019, 23 : 95 - 104
  • [49] 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage
    Zhang, Peng
    Soomro, Razium A.
    Guan, Zhaoruxin
    Sun, Ning
    Xu, Bin
    ENERGY STORAGE MATERIALS, 2020, 29 : 163 - 171
  • [50] Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries
    Lu, Bin
    Lin, Chengjun
    Xiong, Haiji
    Zhang, Chi
    Fang, Lin
    Sun, Jiazhou
    Hu, Ziheng
    Wu, Yalong
    Fan, Xiaohong
    Li, Guifang
    Fu, Jile
    Deng, Dingrong
    Wu, Qihui
    MOLECULES, 2023, 28 (10):