Document-Level Relation Extraction with Additional Evidence and Entity Type Information

被引:0
|
作者
Li, Jinliang [1 ]
Wang, Junlei [1 ]
Li, Canyu [1 ]
Liu, Xiaojing [1 ]
Feng, Zaiwen [1 ,2 ,3 ,4 ]
Qin, Li [1 ,2 ,3 ,4 ]
Mayer, Wolfgang [5 ]
机构
[1] Huazhong Agr Univ, Coll Informat, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Key Lab Smart Farming Agr Animals, Wuhan 430070, Peoples R China
[3] Huazhong Agr Univ, Hubei Engn Technol Res Ctr Agr Big Data, Wuhan 430070, Peoples R China
[4] Huazhong Agr Univ, Engn Res Ctr Intelligent Technol Agr, Minist Educ, Wuhan 430070, Peoples R China
[5] Univ South Australia, Ind AI Res Ctr, Adelaide, SA 4057, Australia
关键词
Document-level relation extraction; Evidence retrieval; Entity type;
D O I
10.1007/978-981-97-5669-8_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Document-level relation extraction faces the challenges of longer text and more complex context than sentence-level relation extraction. In document-level relation extraction, the relation information of an entity pair is usually contained within one or several sentences. However, excessively long document text may lead the model to focus on irrelevant sentences containing wrong information. On the other hand, using only textual information for relation extraction may not be sufficient, some previous models used only text information for relation extraction, ignoring some features of entities themselves, such as entity types, which can be guidance to relation extraction. To address these issues, a Sentence-Token Attention (STA) layer is developed to integrate sentence-level information into tokens. With a supervised attention optimization, the STA layer enables entities to focus more on relevant sentences. After that, we use an evidence fusion method to fuse the sentence information with context embedding. In addition, we indirectly incorporate the entity type information into the entity embedding as guidance to relation classification. Compared with different models, it is found that our model performs better in both relation extraction and evidence retrieval tasks than previous works.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 50 条
  • [31] Discriminative Reasoning for Document-level Relation Extraction
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1653 - 1663
  • [32] Anaphor Assisted Document-Level Relation Extraction
    Lu, Chonggang
    Zhang, Richong
    Sun, Kai
    Kim, Jaein
    Zhang, Cunwang
    Mao, Yongyi
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 15453 - 15464
  • [33] Document-level relation extraction with three channels
    Zhang, Zhanjun
    Zhao, Shan
    Zhang, Haoyu
    Wan, Qian
    Liu, Jie
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [34] Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction
    Xu, Benfeng
    Wang, Quan
    Lyu, Yajuan
    Zhu, Yong
    Mao, Zhendong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14149 - 14157
  • [35] Document-level Relation Extraction as Semantic Segmentation
    Zhang, Ningyu
    Chen, Xiang
    Xie, Xin
    Deng, Shumin
    Tan, Chuanqi
    Chen, Mosha
    Huang, Fei
    Si, Luo
    Chen, Huajun
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3999 - 4006
  • [36] On Event Individuation for Document-Level Information Extraction
    Gantt, William
    Kriz, Reno
    Chen, Yunmo
    Vashishtha, Siddharth
    White, Aaron Steven
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 12938 - 12958
  • [37] Interaction and Fusion of Rich Textual Information Network for Document-level Relation Extraction
    Zhong, Yu
    Shen, Bo
    Wang, Tao
    Zhang, Jinglin
    Liu, Yun
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2024, 30 (08) : 1112 - 1136
  • [38] Document-Level Relation Extraction with Local Relation and Global Inference
    Liu, Yiming
    Shan, Hongtao
    Nie, Feng
    Zhang, Gaoyu
    Yuan, George Xianzhi
    INFORMATION, 2023, 14 (07)
  • [39] Relational Reasoning Model Based on Evidence Sentences for Document-level Relation Extraction
    Li, Tiecheng
    Tang, Jianguo
    Li, Lei
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 671 - 676
  • [40] Document-Level Relation Extraction Based on Fine-Grained Information Guidance
    Pu, Chujun
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 378 - 390