Document-Level Relation Extraction with Additional Evidence and Entity Type Information

被引:0
|
作者
Li, Jinliang [1 ]
Wang, Junlei [1 ]
Li, Canyu [1 ]
Liu, Xiaojing [1 ]
Feng, Zaiwen [1 ,2 ,3 ,4 ]
Qin, Li [1 ,2 ,3 ,4 ]
Mayer, Wolfgang [5 ]
机构
[1] Huazhong Agr Univ, Coll Informat, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Key Lab Smart Farming Agr Animals, Wuhan 430070, Peoples R China
[3] Huazhong Agr Univ, Hubei Engn Technol Res Ctr Agr Big Data, Wuhan 430070, Peoples R China
[4] Huazhong Agr Univ, Engn Res Ctr Intelligent Technol Agr, Minist Educ, Wuhan 430070, Peoples R China
[5] Univ South Australia, Ind AI Res Ctr, Adelaide, SA 4057, Australia
关键词
Document-level relation extraction; Evidence retrieval; Entity type;
D O I
10.1007/978-981-97-5669-8_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Document-level relation extraction faces the challenges of longer text and more complex context than sentence-level relation extraction. In document-level relation extraction, the relation information of an entity pair is usually contained within one or several sentences. However, excessively long document text may lead the model to focus on irrelevant sentences containing wrong information. On the other hand, using only textual information for relation extraction may not be sufficient, some previous models used only text information for relation extraction, ignoring some features of entities themselves, such as entity types, which can be guidance to relation extraction. To address these issues, a Sentence-Token Attention (STA) layer is developed to integrate sentence-level information into tokens. With a supervised attention optimization, the STA layer enables entities to focus more on relevant sentences. After that, we use an evidence fusion method to fuse the sentence information with context embedding. In addition, we indirectly incorporate the entity type information into the entity embedding as guidance to relation classification. Compared with different models, it is found that our model performs better in both relation extraction and evidence retrieval tasks than previous works.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 50 条
  • [1] Document-level Relation Extraction With Entity and Context Information
    Huang, He-Yan
    Yuan, Chang-Sen
    Feng, Chong
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (10): : 1953 - 1962
  • [2] Entity and Evidence Guided Document-Level Relation Extraction
    Huang, Kevin
    Qi, Peng
    Wang, Guangtao
    Ma, Tengyu
    Huang, Jing
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 307 - 315
  • [3] Entity-level Attention Pooling and Information Gating for Document-level Relation Extraction
    Zou, Beiji
    Chen, Zhi
    Zhu, Chengzhang
    Xiao, Ling
    Zeng, Meng
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1407 - 1413
  • [4] A Novel Document-Level Relation Extraction Method Based on BERT and Entity Information
    Han, Xiaoyu
    Wang, Lei
    IEEE ACCESS, 2020, 8 (96912-96919) : 96912 - 96919
  • [5] Document-level relation extraction with structural encoding and entity-pair-level information interaction
    Liu, Wanlong
    Xiao, Yichen
    Cheng, Shaohuan
    Zeng, Dingyi
    Zhou, Li
    Kong, Weishan
    Zhang, Malu
    Chen, Wenyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [6] Document-Level Relation Extraction with Entity Enhancement and Context Refinement
    Zou, Meng
    Yang, Qiang
    Qu, Jianfeng
    Li, Zhixu
    Liu, An
    Zhao, Lei
    Chen, Zhigang
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2021, PT II, 2021, 13081 : 347 - 362
  • [7] Enhancing Document-Level Relation Extraction by Entity Knowledge Injection
    Wang, Xinyi
    Wang, Zitao
    Sun, Weijian
    Hu, Wei
    SEMANTIC WEB - ISWC 2022, 2022, 13489 : 39 - 56
  • [8] Document-level relation extraction with Entity-Selection Attention
    Yuan, Changsen
    Huang, Heyan
    Feng, Chong
    Shi, Ge
    Wei, Xiaochi
    INFORMATION SCIENCES, 2021, 568 : 163 - 174
  • [9] Document-level Relation Extraction with Entity Interaction and Commonsense Knowledge
    Liu, Shen
    Shen, Xinshu
    Liu, Tingting
    Lan, Man
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [10] Document-level relation extraction with entity mentions deep attention
    Xu, Yangsheng
    Tian, Jiaxin
    Tang, Mingwei
    Tao, Linping
    Wang, Liuxuan
    COMPUTER SPEECH AND LANGUAGE, 2024, 84