Prediction of methane emissions using rumination time and milk mid-infrared spectral data via artificial neural networks

被引:0
|
作者
Lopes, Lucas S. F. [1 ]
Shadpour, Saeed [2 ]
Miglior, Filippo [3 ]
Tulpan, Dan [3 ]
Schenkel, Flavio S. [3 ]
Baes, Christine F. [4 ]
机构
[1] Univ Guelph, Ctr Genet Improvement Livestock, Dept Anim Biosci, Guelph, ON, Canada
[2] Ctr Genet Improvement Livestock, Guelph, ON, Canada
[3] Guelph Univ, Guelph, ON, Canada
[4] Univ Guelph, Ctr Genet Improvement Livestock, Guelph, ON, Canada
关键词
artificial neural networks; greenhouse gases; Holstein;
D O I
暂无
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
457
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Accuracy of methane emissions predicted from milk mid-infrared spectra and measured by laser methane detectors in Brown Swiss dairy cows
    Denninger, T. M.
    Schwarm, A.
    Dohme-Meier, F.
    Muenger, A.
    Bapst, B.
    Wegmann, S.
    Grandl, F.
    Vanlierde, A.
    Sorg, D.
    Ortmann, S.
    Clauss, M.
    Kreuzer, M.
    JOURNAL OF DAIRY SCIENCE, 2020, 103 (02) : 2024 - 2039
  • [22] Predicting bovine tuberculosis status of dairy cows from mid-infrared spectral data of milk using deep learning
    Denholm, S. J.
    Brand, W.
    Mitchell, A. P.
    Wells, A. T.
    Krzyzelewski, T.
    Smith, S. L.
    Wall, E.
    Coffey, M. P.
    JOURNAL OF DAIRY SCIENCE, 2020, 103 (10) : 9355 - 9367
  • [23] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [24] Milk mid-infrared spectra enable prediction of lactation-stage-dependent methane emissions of dairy cattle within routine population-scale milk recording schemes
    Vanlierde, Amelie
    Vanrobays, Marie-Laure
    Gengler, Nicolas
    Dardenne, Pierre
    Froidmont, Eric
    Soyeurt, Helene
    McParland, Sinead
    Lewis, Eva
    Deighton, Matthew H.
    Mathot, Michael
    Dehareng, Frederic
    ANIMAL PRODUCTION SCIENCE, 2016, 56 (2-3) : 258 - 264
  • [25] Highly sensitive mid-infrared methane remote sensor using a deep neural network filter
    Wang, Senyuan
    Yang, Shicheng
    Zhu, Shouzheng
    Liu, Shijie
    He, Xin
    Tang, Guoliang
    Li, Chunlai
    Wang, Jianyu
    OPTICS EXPRESS, 2024, 32 (07) : 11849 - 11862
  • [26] Variation in fat globule size in bovine milk and its prediction using mid-infrared spectroscopy
    Fleming, A.
    Schenkel, F. S.
    Chen, J.
    Malchiodi, F.
    Ali, R. A.
    Mallard, B.
    Sargolzaei, M.
    Corredig, M.
    Miglior, F.
    JOURNAL OF DAIRY SCIENCE, 2017, 100 (03) : 1640 - 1649
  • [27] Prediction of coagulation properties, titratable acidity, and pH of bovine milk using mid-infrared spectroscopy
    De Marchi, M.
    Fagan, C. C.
    O'Donnell, C. P.
    Cecchinato, A.
    Dal Zotto, R.
    Cassandro, M.
    Penasa, M.
    Bittante, G.
    JOURNAL OF DAIRY SCIENCE, 2009, 92 (01) : 423 - 432
  • [28] Analysis of the Oil Content of Rapeseed Using Artificial Neural Networks Based on Near Infrared Spectral Data
    Yang, Dazuo
    Li, Hao
    Cao, Chenchen
    Chen, Fudi
    Zhou, Yibing
    Xiu, Zhilong
    JOURNAL OF SPECTROSCOPY, 2014, 2014
  • [29] Time Series Prediction of Morbidity Using Artificial Neural Networks
    Dmitriev A.N.
    Kotin V.V.
    Biomedical Engineering, 2013, 47 (01) : 43 - 45
  • [30] Short communication: Potential prediction of vitamin B12 concentration based on mid-infrared spectral data using Holstein Dairy Herd Improvement milk samples
    Duplessis, M.
    Pellerin, D.
    Girard, C. L.
    Santschi, D. E.
    Soyeurt, H.
    JOURNAL OF DAIRY SCIENCE, 2020, 103 (08) : 7540 - 7546