Blockchain-Enhanced Zero Knowledge Proof-Based Privacy-Preserving Mutual Authentication for IoT Networks

被引:2
|
作者
Pathak, Aditya [1 ]
Al-Anbagi, Irfan [1 ,2 ]
Hamilton, Howard J. [3 ]
机构
[1] Univ Regina, Fac Engn & Appl Sci, Regina, SK S4S 0A2, Canada
[2] Univ Saskatchewan, Coll Engn, Dept Elect & Comp Engn, Saskatoon, SK S7N 5A9, Canada
[3] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Authentication; Internet of Things; Security; Scalability; Privacy; Blockchains; Low latency communication; Data privacy; Zero knowledge proof; blockchain; IoT networks; privacy-preserving; zero-knowledge proof; LIGHTWEIGHT AUTHENTICATION; SECURITY; SCHEME;
D O I
10.1109/ACCESS.2024.3450313
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Authentication in low-latency Internet of Things (IoT) networks must satisfy three requirements, namely, high security and privacy preservation, high scalability, and low authentication time. These requirements arise because devices in IoT networks must operate in a secure and scalable manner despite being limited in computational resources. Existing authentication mechanisms focus on the security and privacy of IoT networks but neglect the importance of scalability and authentication time. Therefore, existing authentication mechanisms are unscalable and unsuited to low-latency IoT networks. With a focus on increasing scalability and reducing the authentication time while providing high security and privacy preservation in low-latency IoT networks, we propose a mutual authentication mechanism called Zero-Knowledge Proof-based Privacy-Preserving Mutual Authentication (Z-PMA) for IoT networks. The Z-PMA mechanism utilizes a combination of a zero-knowledge proof, an incentive mechanism, and a permissioned blockchain to provide secure, privacy-preserving, scalable, low-latency authentication for IoT networks. We develop a new approach to address the trade-off between the three requirements for authentication mechanisms for low-latency IoT networks that has the potential to improve the overall performance of these networks. A permissioned blockchain is incorporated in the approach to provide secure and immutable data storage using its distributed and unforgeable ledger. Our experimental results show that the Z-PMA mechanism reduces authentication time than existing state-of-the-art authentication mechanisms, while providing high security and privacy preservation as well as high scalability.
引用
收藏
页码:118618 / 118636
页数:19
相关论文
共 50 条
  • [31] A Hybrid Blockchain-Based Privacy-Preserving Authentication Scheme for Vehicular Ad Hoc Networks
    Su, Huadong
    Dong, Shi
    Zhang, Ting
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 17059 - 17072
  • [32] Blockchain-based conditional privacy-preserving authentication scheme for vehicular ad hoc networks
    Gong C.
    Xiong L.
    He X.
    Niu X.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (05) : 6273 - 6286
  • [33] Blockchain-based conditional privacy-preserving authentication scheme in VANETs
    Pravin Mundhe
    Pooja Phad
    R. Yuvaraj
    Shekhar Verma
    S. Venkatesan
    Multimedia Tools and Applications, 2023, 82 : 24155 - 24179
  • [34] Privacy-preserving blockchain-based authentication and trust management in VANETs
    Ahmed, Waheeb
    Di, Wu
    Mukathe, Daniel
    IET NETWORKS, 2022, 11 (3-4) : 89 - 111
  • [35] Privacy-Preserving Blockchain-Based Authentication in Smart Energy Systems
    Vangala, Anusha
    Das, Ashok Kumar
    PROCEEDINGS OF THE TWENTIETH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, SENSYS 2022, 2022, : 1208 - 1214
  • [36] An Efficient Blockchain-based Privacy-Preserving Authentication Scheme in VANET
    Xu, Shiyuan
    Chen, Xue
    Kong, Weimin
    Cao, Yibo
    He, Yunhua
    Xiao, Ke
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [37] Blockchain-based conditional privacy-preserving authentication scheme in VANETs
    Mundhe, Pravin
    Phad, Pooja
    Yuvaraj, R.
    Verma, Shekhar
    Venkatesan, S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (16) : 24155 - 24179
  • [38] A Secure and Privacy-Preserving Mutual Authentication System for Global Roaming in Mobile Networks
    Shashidhara, R.
    Lajuvanthi, M.
    Akhila, S.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 1435 - 1446
  • [39] A Secure and Privacy-Preserving Mutual Authentication System for Global Roaming in Mobile Networks
    R. Shashidhara
    M. Lajuvanthi
    S. Akhila
    Arabian Journal for Science and Engineering, 2022, 47 : 1435 - 1446
  • [40] ECC based secure privacy-preserving authentication scheme for wireless sensor networks in IoT environment
    Shilpi Sharma
    Bijendra Kumar
    International Journal of Information Technology, 2025, 17 (1) : 87 - 96