Deep Reinforcement Learning-Based Adaptive Scheduling for Wireless Time-Sensitive Networking

被引:2
|
作者
Kim, Hanjin [1 ]
Kim, Young-Jin [2 ]
Kim, Won-Tae [1 ]
机构
[1] Korea Univ Technol & Educ, Dept Comp Sci & Engn, Future Convergence Engn Major, Cheonan Si 31253, South Korea
[2] Sehan Univ, Dept Artificial Intelligence Big Data, Dangjin Si 31746, South Korea
关键词
wireless time-sensitive networking; time-sensitive networking; time-aware shaper; deep reinforcement learning; wireless LAN; CLOCK SYNCHRONIZATION; COMMUNICATION; 5G;
D O I
10.3390/s24165281
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Time-sensitive networking (TSN) technologies have garnered attention for supporting time-sensitive communication services, with recent interest extending to the wireless domain. However, adapting TSN to wireless areas faces challenges due to the competitive channel utilization in IEEE 802.11, necessitating exclusive channels for low-latency services. Additionally, traditional TSN scheduling algorithms may cause significant transmission delays due to dynamic wireless characteristics, which must be addressed. This paper proposes a wireless TSN model of IEEE 802.11 networks for the exclusive channel access and a novel time-sensitive traffic scheduler, named the wireless intelligent scheduler (WISE), based on deep reinforcement learning. We designed a deep reinforcement learning (DRL) framework to learn the repetitive transmission patterns of time-sensitive traffic and address potential latency issues from changing wireless conditions. Within this framework, we identified the most suitable DRL model, presenting the WISE algorithm with the best performance. Experimental results indicate that the proposed mechanisms meet up to 99.9% under the various wireless communication scenarios. In addition, they show that the processing delay is successfully limited within the specific time requirements and the scalability of TSN streams is guaranteed by the proposed mechanisms.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Hybrid NOMA for Time-Sensitive Wireless Federated Learning Through Lyapunov Optimization based Resource Scheduling
    Wu, Changxiang
    Ren, Yijing
    So, Daniel K. C.
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 1401 - 1406
  • [32] DeepWeave: Accelerating Job Completion Time with Deep Reinforcement Learning-based Coflow Scheduling
    Sun, Penghao
    Guo, Zehua
    Wang, Junchao
    Li, Junfei
    Lan, Julong
    Hu, Yuxiang
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3314 - 3320
  • [33] Enabling Low Latency for ECQF based Flow Aggregation Scheduling in Time-Sensitive Networking
    Liu, Ping
    Zhang, Tong
    Feng, Xiaoqin
    Ma, Yanying
    Ren, Fengyuan
    Proceedings - Design Automation Conference,
  • [34] Time-Aware Traffic Scheduling with Virtual Queues in Time-Sensitive Networking
    Xue, Junli
    Shou, Guochu
    Liu, Yaqiong
    Hu, Yihong
    Guo, Zhigang
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 604 - 607
  • [35] A deep reinforcement learning-based approach for the residential appliances scheduling
    Li, Sichen
    Cao, Di
    Huang, Qi
    Zhang, Zhenyuan
    Chen, Zhe
    Blaabjerg, Frede
    Hu, Weihao
    ENERGY REPORTS, 2022, 8 : 1034 - 1042
  • [36] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Zheng, Tao
    Wan, Jian
    Zhang, Jilin
    Jiang, Congfeng
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [37] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Tao Zheng
    Jian Wan
    Jilin Zhang
    Congfeng Jiang
    Journal of Cloud Computing, 11
  • [38] Deep Reinforcement Learning-based Scheduling for Roadside Communication Networks
    Atallah, Rihal
    Assi, Chadi
    Khahhaz, Maurice
    2017 15TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2017,
  • [39] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath Jr, Robert W.
    IEEE ACCESS, 2022, 10 : 125509 - 125525
  • [40] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath, Robert W.
    IEEE Access, 2022, 10 : 125509 - 125525