ATM and ATR gene editing mediated by CRISPR/Cas9 in Chinese Hamster cells

被引:2
|
作者
Maeda, Junko [1 ]
Chailapakul, Piyawan [1 ]
Kato, Takamitsu A. [1 ]
机构
[1] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA
关键词
ATM; ATR; CRISPR/Cas9; Chinese hamster cells; ATAXIA-TELANGIECTASIA; DNA-DAMAGE; IONIZING-RADIATION; CHROMOSOMAL RADIOSENSITIVITY; SENSITIVITY; MUTANTS; REPLICATION; INDIVIDUALS; REPAIR; IDENTIFICATION;
D O I
10.1016/j.mrfmmm.2024.111871
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Chinese hamster-derived cell lines including Chinese hamster lung fibroblasts (V79) have been used as model somatic cell lines in radiation biology and toxicology research for decades and have been instrumental in advancing our understanding of DNA damage response (DDR) mechanisms. Whereas many mutant lines deficient in DDR genes have been generated more than over decades, several key DDR genes such as ATM and ATR have not been established in the Chinese hamster system. Here, we transfected CRISPR/Cas9 vectors targeting Chinese hamster ATM or ATR into V79 cells and investigated whether the isolated clones had the characteristics reported in human and mouse studies. We obtained two clones of ATM knockout cells containing an insertion or deletions in the targeted locus. The ATM knockouts with no detectable ATM protein expression exhibited increased sensitivity to radiation and DNA double strand break inducing agents, cell cycle checkpoint defects and defective chromatid break repair. These are all characteristics of defective ATM function. Among the obtained ATR cells, which contained mutations in both ATR alleles while maintaining normal levels of ATR protein expression, one clone exhibited hypersensitivity to UV and replication stress agents. In the present study, we successfully established CRISPR-Cas9 derived ATM knockout cells. We couldn't knock out the ATR gene but obtained ATR mutant cells. Our results showed that Chinese hamster origin ATM knockout cells and ATR mutant cells could be useful tools for further research to reveal oncogenic functions and effects of developing anti-cancer therapeutics.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Delivery methods for CRISPR/Cas9 gene editing in crustaceans
    Sen Xu
    Thinh Phu Pham
    Swatantra Neupane
    Marine Life Science & Technology, 2020, 2 : 1 - 5
  • [32] Fanconi Anemia Gene Editing by the CRISPR/Cas9 System
    Osborn, Mark J.
    Gabriel, Richard
    Webber, Beau R.
    DeFeo, Anthony P.
    McElroy, Amber N.
    Jarjour, Jordan
    Starker, Colby G.
    Wagner, John E.
    Joung, J. Keith
    Voytas, Daniel F.
    von Kalle, Christof
    Schmidt, Manfred
    Blazar, Bruce R.
    Tolar, Jakub
    HUMAN GENE THERAPY, 2015, 26 (02) : 114 - 126
  • [33] Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology
    Zoe A. Stewart
    Current Transplantation Reports, 2022, 9 : 268 - 275
  • [34] Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology
    Stewart, Zoe A.
    CURRENT TRANSPLANTATION REPORTS, 2022, 9 (04) : 268 - 275
  • [35] CRISPR/Cas9 gene editing special issue INTRODUCTION
    Doench, John G.
    FEBS JOURNAL, 2016, 283 (17) : 3160 - 3161
  • [36] Optimization of CRISPR/Cas9 Mediated Editing in Murine Lineage Negative Cells for SCD
    Sanchez, Julie M.
    Romero, Zulema
    Kohn, Donald B.
    MOLECULAR THERAPY, 2020, 28 (04) : 451 - 452
  • [37] CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells
    Bloomer, Hanan
    Khirallah, Jennifer
    Li, Yamin
    Xu, Qiaobing
    ADVANCED DRUG DELIVERY REVIEWS, 2022, 181
  • [38] CRISPR/Cas9 Gene Editing of Hematopoietic Stem and Progenitor Cells for Gene Therapy Applications
    Venkatesan, Vigneshwaran
    Christopher, Abisha Crystal
    Karuppusamy, Karthik, V
    Babu, Prathibha
    Alagiri, Manoj Kumar K.
    Thangavel, Saravanabhavan
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (186):
  • [39] Genome editing of immune cells using CRISPR/Cas9
    Kim, Segi
    Hupperetz, Cedric
    Lim, Seongjoon
    Kim, Chan Hyuk
    BMB REPORTS, 2021, 54 (01) : 59 - 69
  • [40] Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein
    Bevacqua, Romina J.
    Zhao, Weichen
    Merheb, Emilio
    Kim, Seung Hyun
    Marson, Alexander
    Gloyn, Anna L.
    Kim, Seung K.
    ISCIENCE, 2024, 27 (01)