Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid-State Batteries

被引:0
|
作者
Kiyek, Vivien [1 ,2 ]
Schwab, Christian [1 ]
Scheld, Walter Sebastian [1 ]
Roitzheim, Christoph [1 ]
Lindner, Adrian [3 ]
Menesklou, Wolfgang [3 ]
Finsterbusch, Martin [1 ,4 ]
Fattakhova-Rohlfing, Dina [1 ,4 ,5 ,6 ]
Guillon, Olivier [1 ,2 ,4 ,7 ]
机构
[1] Forschungszentrum Julich, Inst Energy Mat & Devices Mat Synth & Proc IMD 2, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Mineral Engn, D-52064 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Electrochem Technol IAM ET, D-76131 Karlsruhe, Germany
[4] Helmholtz Inst Munster Ion Energy Storage IEK 12, D-48149 Munster, Germany
[5] Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany
[6] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen, D-47057 Duisburg, Germany
[7] Julich Aachen Res Alliance JARA ENERGY, D-52425 Julich, Germany
关键词
all-solid-state batteries; ceramic composites; in situ synthesis; LLZO; LITHIUM-ION BATTERY; SUBSTITUTED LI7LA3ZR2O12; INTERFACE MODIFICATION; LICOO2; ELECTROLYTE; RAMAN; PERFORMANCE; CONDUCTION;
D O I
10.1002/advs.202404682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state batteries based on Li7La3Zr2O12 (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO2 (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented. It is shown that Al, Ta:LLZO can be formed directly in the presence of LCO from metal oxide precursors (LiOH, La2O3, ZrO2, Al2O3, and Ta2O5) by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. In addition, performance-optimized gradient microstructures can be produced by sequential casting of slurries with different compositions, resulting in dense and flat phase-pure cathodes without unwanted ion interdiffusion or secondary phase formation. Freestanding cathodes with a thickness of 85 mu m, a relative density of 95%, and an industrial relevant LCO loading of 15 mg show an initial capacity of 82 mAh g-1 (63% of the theoretical capacity of LCO) in a solid-state cell with Li metal anodes, which is comparable to conventional LCO/LLZO cathodes and can be further improved in the future. Free-standing solid-state cathodes of Li7La3Zr2O12 (LLZO) solid electrolyte and LiCoO2 (LCO) are formed in a one-step process based on cheap precursors and utilizing the industrially established tape casting process. LLZO can be formed directly in the presence of LCO from metal oxide precursors by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. image
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Fabrication of garnet solid electrolytes via sputtering for solid-state batteries
    Tsai, Shu-Yi
    Fung, Kuan-Zong
    SOLID-STATE ELECTRONICS, 2024, 215
  • [32] Optimization strategies for key interfaces of LLZO-based solid-state lithium metal batteries
    Chu, Jiangwei
    Li, Ziwei
    Wang, Jin
    Huang, Gang
    Zhang, Xinbo
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (09) : 2109 - 2134
  • [33] Impact of fabrication methods on binder distribution and charge transport in composite cathodes of all-solid-state batteries
    Emley, Benjamin
    Wu, Chaoshan
    Zhao, Lihong
    Ai, Qing
    Liang, Yanliang
    Chen, Zhaoyang
    Guo, Liqun
    Terlier, Tanguy
    Lou, Jun
    Fan, Zheng
    Yao, Yan
    MATERIALS FUTURES, 2023, 2 (04):
  • [34] A solid-state precursor route to MB2-Al2O3 composite powders
    Yan, Chunlei
    Liu, Rongjun
    Zhang, Changrui
    Cao, Yingbin
    Long, Xianhai
    POWDER TECHNOLOGY, 2016, 301 : 596 - 600
  • [35] Microstructural Modeling of Composite Cathodes for All-Solid-State Batteries
    Bielefeld, Anja
    Weber, Dominik A.
    Janek, Juergen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (03): : 1626 - 1634
  • [36] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [37] Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook
    Wang, Senhao
    La Monaca, Andrea
    Demopoulos, George P.
    ENERGY ADVANCES, 2025, 4 (01):
  • [38] Influence of the LLZO-PEO interface on the micro- and macro-scale properties of composite polymer electrolytes for solid-state batteries
    Ghorbanzade, Pedram
    Accardo, Grazia
    Gomez, Kerman
    Lopez-Aranguren, Pedro
    Devaraj, Shanmukaraj
    Costa, Carlos Miguel
    Lanceros-Mendez, Senentxu
    del Amo, Juan Miguel Lopez
    MATERIALS TODAY ENERGY, 2023, 38
  • [39] How dispersed LLZTO enhances ionic conductivity in LiFePO4 composite cathodes for solid-state batteries
    Kumchompoo, Jaturon
    Lee, Jyh-Tsung
    Li, Chia-Chen
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [40] Unveiling Surface Chemistry of Ultrafast-Sintered LLZO Solid-State Electrolytes for High-Performance Li-Garnet Solid-State Batteries
    Zhang, Huanyu
    Klimpel, Matthias
    Wieczerzak, Krzysztof
    Dubey, Romain
    Okur, Faruk
    Michler, Johann
    Jeurgens, Lars P. H.
    Chernyshov, Dmitry
    van Beek, Wouter
    Kravchyk, Kostiantyn V.
    Kovalenko, Maksym V.
    CHEMISTRY OF MATERIALS, 2024, 36 (22) : 11254 - 11263