Robust causal inference for point exposures with missing confounders

被引:0
|
作者
Levis, Alexander W. [1 ]
Mukherjee, Rajarshi [2 ]
Wang, Rui [2 ,3 ,4 ]
Haneuse, Sebastien [2 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
关键词
Causal inference; missing data; multiply robust; semiparametric theory; BARIATRIC SURGERY;
D O I
10.1002/cjs.11832
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Large observational databases are often subject to missing data. As such, methods for causal inference must simultaneously handle confounding and missingness; surprisingly little work has been done at this intersection. Motivated by this, we propose an efficient and robust estimator of the causal average treatment effect from cohort studies when confounders are missing at random. The approach is based on a novel factorization of the likelihood that, unlike alternative methods, facilitates flexible modelling of nuisance functions (e.g., with state-of-the-art machine learning methods) while maintaining nominal convergence rates of the final estimators. Simulated data, derived from an electronic health record-based study of the long-term effects of bariatric surgery on weight outcomes, verify the robustness properties of the proposed estimators in finite samples. Our approach may serve as a theoretical benchmark against which ad hoc methods may be assessed. Les grandes bases de donn & eacute;es observationnelles sont souvent confront & eacute;es au probl & egrave;me des donn & eacute;es manquantes. De ce fait, les m & eacute;thodes d'inf & eacute;rence causale doivent g & eacute;rer & agrave; la fois les facteurs de confusion et les donn & eacute;es manquantes, un domaine & eacute;tonnamment peu explor & eacute;. Pour r & eacute;pondre & agrave; ce d & eacute;fi, les auteurs de cet article proposent un estimateur efficace et robuste de l'effet causal moyen du traitement. Cet estimateur est sp & eacute;cialement con & ccedil;u pour les & eacute;tudes de cohortes o & ugrave; les facteurs de confusion sont manquants de mani & egrave;re al & eacute;atoire. L'approche propos & eacute;e s'appuie sur une nouvelle factorisation de la vraisemblance. Contrairement & agrave; d'autres m & eacute;thodes, celle-ci permet de mod & eacute;liser les fonctions de nuisance de mani & egrave;re flexible, notamment gr & acirc;ce & agrave; des techniques avanc & eacute;es d'apprentissage automatique, et ce tout en maintenant les taux de convergence attendus des estimateurs finaux. Des simulations bas & eacute;es sur des dossiers m & eacute;dicaux & eacute;lectroniques concernant les effets & agrave; long terme de la chirurgie bariatrique sur le poids confirment la robustesse des estimateurs dans des & eacute;chantillons finis. Cette approche pourrait servir de r & eacute;f & eacute;rence th & eacute;orique pour & eacute;valuer d'autres m & eacute;thodes ad-hoc.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Inference for Causal Interactions for Continuous Exposures under Dichotomization
    VanderWeele, Tyler J.
    Chen, Yu
    Ahsan, Habibul
    BIOMETRICS, 2011, 67 (04) : 1414 - 1421
  • [22] Detection of Unfaithfulness and Robust Causal Inference
    Jiji Zhang
    Peter Spirtes
    Minds and Machines, 2008, 18 : 239 - 271
  • [23] Doubly robust estimation in missing data and causal inference models (vol 61, pg 962, 2005)
    Bang, Heejung
    Robins, James M.
    BIOMETRICS, 2008, 64 (02) : 650 - 650
  • [24] Causal inference in survival analysis under deterministic missingness of confounders in register data
    Ciocanea-Teodorescu, Iuliana
    Goetghebeur, Els
    Waernbaum, Ingeborg
    Schon, Staffan
    Gabriel, Erin E.
    STATISTICS IN MEDICINE, 2023, : 1946 - 1964
  • [25] Robust Bayesian causal estimation for causal inference in medical diagnosis
    Basu, Tathagata
    Troffaes, Matthias C. M.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2025, 177
  • [26] Efficient Nonparametric Causal Inference with Missing Exposure Information
    Kennedy, Edward H.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2020, 16 (01):
  • [27] Vandenbroucke and Pearce Respond to "Incident and Prevalent Exposures and Causal Inference"
    Vandenbroucke, Jan
    Pearce, Neil
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2015, 182 (10) : 846 - 847
  • [28] Relaxed doubly robust estimation in causal inference
    Xu, Tinghui
    Zhao, Jiwei
    STATISTICAL THEORY AND RELATED FIELDS, 2024, 8 (01) : 69 - 79
  • [29] A Bayesian view of doubly robust causal inference
    Saarela, O.
    Belzile, L. R.
    Stephens, D. A.
    BIOMETRIKA, 2016, 103 (03) : 667 - 681
  • [30] Enhanced Doubly Robust Procedure for Causal Inference
    Ao Yuan
    Anqi Yin
    Ming T. Tan
    Statistics in Biosciences, 2021, 13 : 454 - 478