Influence of Aluminum Pillar Nanostructures on Thin-Film Organic Solar Cells

被引:0
|
作者
Phengdaam, Apichat [1 ]
Sitpathom, Nonthanan [1 ]
Hong, Minghui [2 ]
Shinbo, Kazunari [3 ,4 ]
Kato, Keizo [3 ,4 ]
Baba, Akira [3 ,4 ]
机构
[1] Prince Songkla Univ, Fac Sci, Div Phys Sci, Hat Yai 90110, Songkhla, Thailand
[2] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361005, Peoples R China
[3] Niigata Univ, Grad Sch Sci & Technol, 8050 Ikarashi 2 Nocho,Nishi Ku, Niigata 9502181, Japan
[4] Niigata Univ, Fac Engn, 8050 Ikarashi 2 Nocho,Nishi Ku, Niigata 9502181, Japan
基金
日本学术振兴会;
关键词
aluminum pillar nanostructures; finite-difference time-domain; organic solar cells; pillar nanostructures; surface plasmon resonance; PLASMONIC NANOPARTICLES; ENHANCED PHOTOCURRENT; PERFORMANCE; SURFACES; SULFIDE;
D O I
10.1002/pssa.202400221
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study explores the application of pillar nanostructures in organic solar cells (OSCs). The aluminum pillar nanostructures (AlPNSs) are fabricated on an active layer surface comprising of a blend poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl C61 butyric acid methyl ester using nanoimprinting. Aluminum back electrodes are formed, resulting in AlPNSs with an imprinted pattern height of 60 +/- 6 nm and a pitch of 212 +/- 49 nm. Atomic force microscope images and current density versus voltage curves are obtained for the fabricated devices, both with and without AlPNSs. The results indicate a solar cell efficiency increase of 15.16% in the AlPNS OSCs compared to the reference cells. To investigate the role of AlPNSs in the enhancement, impedance spectroscopy, incident photon-to-current efficiency, UV-Vis reflection spectroscopy, and finite-difference time-domain simulations are performed for the both devices. The results demonstrate that the combination of propagating surface plasmon resonance and light-trapping properties due to AlPNSs significantly enhances the overall optical performance. This research provides new insights into the potential of imprinted nanostructures for enhancing OSC performance, including their plasmonic and optical characteristics. This research investigates the utilization of aluminum pillar nanostructures (AlPNSs) in organic solar cells (OSCs). AlPNSs are fabricated on the active layer as back electrode, leading to a 15.16% enhancement in solar cell efficiency compared to reference cells. The findings shed light on the promising prospects of the nanostructures, highlighting their plasmonic and optical attributes in improving OSC performance.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Silicon thin-film solar cells
    Fuhs, W
    NANOSTRUCTURED AND ADVANCED MATERIALS FOR APPLICATIONS IN SENSOR, OPTOELECTRONIC AND PHOTOVOLTAIC TECHNOLOGY, 2005, 204 : 293 - 298
  • [32] THIN-FILM SOLAR-CELLS
    GHOSH, AK
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (03) : C116 - C116
  • [33] Thin-film organic-based solar cells for space power
    Bailey, SG
    Harris, JD
    Hepp, AF
    Anglin, EJ
    Raffaelle, RP
    Clark, HR
    Gardner, STP
    Sun, SS
    2002 37TH INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE (IECEC), 2002, : 191 - 196
  • [34] THIN-FILM SOLAR-CELLS
    BLOSS, WH
    PFISTERER, F
    SCHUBERT, M
    WALTER, T
    PROGRESS IN PHOTOVOLTAICS, 1995, 3 (01): : 3 - 24
  • [35] Thin-film solar cells: An overview
    Deb, SK
    RENEWABLE ENERGY, 1996, 8 (1-4) : 375 - 379
  • [36] THIN-FILM SOLAR-CELLS
    BURTON, LC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (02): : 105 - 105
  • [37] THIN-FILM SOLAR-CELLS
    COUTTS, TJ
    THIN SOLID FILMS, 1978, 50 (MAY) : 99 - 117
  • [38] CONCENTRATOR FOR THIN-FILM SOLAR CELLS
    HOLLANDS, KG
    SOLAR ENERGY, 1971, 13 (02) : 149 - &
  • [39] Design of multilayered nanostructures and donor-acceptor interfaces in solution-processed thin-film organic solar cells
    Benten, Hiroaki
    Ogawa, Michihiro
    Ohkita, Hideo
    Ito, Shinzaburo
    ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (10) : 1563 - 1572
  • [40] Enhanced performance of InGaN thin-film solar cells containing plasmonic and dielectric nanostructures
    Kumawat, Uttam K.
    Kumar, Kamal
    Das, Pankaj
    Ahmed, Kaleem
    Bhardwaj, Priyanka
    Dhawan, Anuj
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES VIII, 2019, 10913