Behavior of Existing Box Beams Repaired with High-Strength Mortar Layer and Ultra-High-Performance Concrete (UHPC) Overlay: Experimental, Numerical, and Theoretical Investigations

被引:1
|
作者
Nong, Shengwei [1 ]
Li, Baojun [2 ]
Kong, Lingcai [1 ]
Huang, Jian [1 ]
Chen, Xiaohuang [2 ]
Jiang, Zhimei [3 ,4 ]
Yang, Jun [3 ,4 ]
Zou, Yang [3 ,4 ]
Zhang, Zhongya [3 ]
机构
[1] Highway Dev Ctr Guixi, Nanning 530001, Guangxi Zhuang, Peoples R China
[2] Guangxi Transportat Sci & Technol Grp Co Ltd, Nanning 530001, Peoples R China
[3] Chongqing Jiaotong Univ, State Key Lab Mt Bridge & Tunnel Engn, Chongqing 400074, Peoples R China
[4] Chongqing Jiaotong Univ, Sch Civil Engn, Chongqing 400074, Peoples R China
关键词
UHPC; bridge strengthening; existing box beams; on-site testing; flexural behavior; SHEAR PERFORMANCE; FLEXURAL BEHAVIOR; BRIDGES; UHPFRC;
D O I
10.3390/buildings14072052
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Box beams constructed earlier were prone to inadequate bending capacity owing to low construction standards, overloading, and environmental degradation. To resolve the challenge, three full-scale box slab beams in service for 15 years were strengthened with a high-strength mortar layer and an ultra-high-performance concrete (UHPC) layer in this paper. The flexural performances of unstrengthened beams (control beam) and strengthened beams (mortar beam, UHPC beam) were investigated by in situ four-point bending tests and numerical simulations. The experimental results showed that the cracking of box beams, strengthened with high-strength mortar and UHPC layers, was effectively mitigated. In comparison to the control beam, the cracking load of the mortar beam and the UHPC beam increased by 20%, and the ultimate load increased by 23.5% and 35.3%, respectively. The high-strength mortar layer had little influence on the elastic-phase stiffness of box beams. In contrast, the stiffness of the elastic phase of the box beam, strengthened by the UHPC layer, increased by 32.9%. In the numerical simulations, the load-deflection curves obtained from finite elements and tests coincided well. The characteristic loads showed relatively good agreement with the test results, with errors below 10%. Combined with the tests and numerical analyses, the proposed equations for predicting the ultimate bearing capacities of the control beam, mortar beam, and UHPC beam were presented with a better prediction accuracy.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Bond Behavior of High-Strength Steel Rebar in Ultra-High-Performance Manufactured Sand Concrete: Experiment and Modelling
    Wang, Caiqin
    Jiao, Yubo
    Xing, Jian
    Chen, Yaojia
    BUILDINGS, 2024, 14 (08)
  • [32] Shear Strength of Ultra-High-Performance Concrete (UHPC) Beams without Transverse Reinforcement: Prediction Models and Test Data
    Kodsy, Antony
    Morcous, George
    MATERIALS, 2022, 15 (14)
  • [33] Experimental and numerical study of the flexural response of Ultra High Performance Concrete (UHPC) beams reinforced with GFRP
    Mahaini, Zin
    Abed, Farid
    Alhoubi, Yazan
    Elnassar, Zeinah
    COMPOSITE STRUCTURES, 2023, 315
  • [34] Experimental analysis of cracking behavior of concrete beams reinforced with high-strength bars experimental analysis of cracking behavior of concrete beams reinforced with high-strength bars
    Li, Zhi-Hua
    Su, Xiao-Zu
    Zhao, Yong
    Tumu Jianzhu yu Huanjing Gongcheng/Journal of Civil, Architectural and Environmental Engineering, 2010, 32 (01): : 51 - 55
  • [35] An Experimental Study on the Dynamic Behavior of an Ultra High-Strength Concrete
    Gunay, Ahmet Reha
    Karadeniz, Sami
    Kaya, Mustafa
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [36] Experimental and numerical study on bond strength between conventional concrete and Ultra High-Performance Concrete (UHPC)
    Farzad, Mahsa
    Shafieifar, Mohamadreza
    Azizinamini, Atorod
    ENGINEERING STRUCTURES, 2019, 186 : 297 - 305
  • [37] Experimental, Numerical, and Analytical Studies of Uniaxial Compressive Behavior of Concrete Confined by Ultra-High-Performance Concrete
    Wang, Shijun
    Liu, Chun
    Tian, Yunfei
    Wang, Xing
    Tong, Teng
    Zhuo, Saiyang
    ADVANCES IN CIVIL ENGINEERING, 2023, 2023
  • [38] Experimental and Numerical Investigations on the Rotation Capacity of High-Strength Steel Beams
    Bartsch, Helen
    Eyben, Felix
    Pauli, Gesa
    Schaffrath, Simon
    Feldmann, Markus
    JOURNAL OF STRUCTURAL ENGINEERING, 2021, 147 (06)
  • [39] Numerical study on the flexural and shear behavior of steel fiber and high-strength steel combination in ultra-high-performance fiber-reinforced concrete beams under cyclic loading
    Nasiri, Havre
    Pourbaba, Masoud
    Yaghin, Mohammad Ali Lotfollahi
    STRUCTURAL CONCRETE, 2024,
  • [40] Experimental investigation on seismic performance of columns enhanced by high-strength steel bars and ultra-high-performance fiber reinforced concrete
    Li, Yanyan
    Wu, Kai
    Pan, Jin
    Zhao, Chuan
    Wang, Fengliang
    Zhang, Baowei
    Liu, Qinghua
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20