A MESHLESS SOLVER FOR BLOOD FLOW SIMULATIONS IN ELASTIC VESSELS USING A PHYSICS-INFORMED NEURAL NETWORK

被引:2
|
作者
Zhang, Han [1 ,2 ]
Chan, Raymond H. [2 ]
Tai, Xue-cheng [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Hong Kong Ctr Cerebro Cardiovasc Hlth Engn, Hong Kong, Peoples R China
[3] Norwegian Res Ctr NORCE, Bergen, Norway
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 04期
关键词
Key words. fluid-structure interaction; physics-informed neural network; blood flow simulation; arbitrary Lagrangian--Eulerian; computational fluid dynamics; FLUID-STRUCTURE INTERACTION; DEEP LEARNING FRAMEWORK; PRESSURE WIRE; RESERVE; HEMODYNAMICS;
D O I
10.1137/23M1622696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Investigating blood flow in the cardiovascular system is crucial for assessing cardiovascular health. Computational approaches offer some noninvasive alternatives to measure blood flow dynamics. Numerical simulations based on traditional methods such as finite-element and other numerical discretizations have been extensively studied and have yielded excellent results. However, adapting these methods to real-life simulations remains a complex task. In this paper, we propose a method that offers flexibility and can efficiently handle real-life simulations. We suggest utilizing the physics-informed neural network to solve the Navier-Stokes equation in a deformable domain, specifically addressing the simulation of blood flow in elastic vessels. Our approach models blood flow using an incompressible, viscous Navier--Stokes equation in an arbitrary Lagrangian--Eulerian form. The mechanical model for the vessel wall structure is formulated by an equation of Newton's second law of momentum and linear elasticity to the force exerted by the fluid flow. Our method is a mesh-free approach that eliminates the need for discretization and meshing of the computational domain. This makes it highly efficient in solving simulations involving complex geometries. Additionally, with the availability of well-developed open-source machine learning framework packages and parallel modules, our method can easily be accelerated through GPU computing and parallel computing. To evaluate our approach, we conducted experiments on regular cylinder vessels as well as vessels with plaque on their walls. We compared our results to a solution calculated by finite element methods using a dense grid and small time steps, which we considered as the ground truth solution. We report the relative error and the time consumed to solve the problem, highlighting the advantages of our method.
引用
收藏
页码:C479 / C507
页数:29
相关论文
共 50 条
  • [31] Elastic Full-Waveform Inversion via Physics-Informed Recurrent Neural Network
    Lu, Cai
    Wang, Yunchen
    Zou, Xuyang
    Zong, Jingjing
    Su, Qin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [32] Physics-informed neural network compression mechanism for airfoil flow field prediction
    Huang, Hongyu
    Ye, Yiyang
    Zhang, Bohan
    Xie, Zhijiang
    Xu, Fei
    Chen, Chao
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [33] FlowDNN: a physics-informed deep neural network for fast and accurate flow prediction
    Chen, Donglin
    Gao, Xiang
    Xu, Chuanfu
    Wang, Siqi
    Chen, Shizhao
    Fang, Jianbin
    Wang, Zheng
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2022, 23 (02) : 207 - 219
  • [34] PINION: physics-informed neural network for accelerating radiative transfer simulations for cosmic reionization
    Korber, Damien
    Bianco, Michele
    Tolley, Emma
    Kneib, Jean-Paul
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 521 (01) : 902 - 915
  • [35] Physics-informed neural network solution for thermo-elastic cavity expansion problem
    Yang, He
    Ren, Fei
    Song, Yan-Jie
    Yu, Hai-Sui
    Chen, Xiaohui
    GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2024,
  • [36] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [37] Meshless methods for American option pricing through Physics-Informed Neural Networks
    Gatta, Federico
    Di Cola, Vincenzo Schiano
    Giampaolo, Fabio
    Piccialli, Francesco
    Cuomo, Salvatore
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 151 : 68 - 82
  • [38] Physics-informed Neural Network for system identification of rotors
    Liu, Xue
    Cheng, Wei
    Xing, Ji
    Chen, Xuefeng
    Zhao, Zhibin
    Zhang, Rongyong
    Huang, Qian
    Lu, Jinqi
    Zhou, Hongpeng
    Zheng, Wei Xing
    Pan, Wei
    IFAC PAPERSONLINE, 2024, 58 (15): : 307 - 312
  • [39] A Physics-Informed Recurrent Neural Network for RRAM Modeling
    Sha, Yanliang
    Lan, Jun
    Li, Yida
    Chen, Quan
    ELECTRONICS, 2023, 12 (13)
  • [40] A physics-informed neural network for Kresling origami structures
    Liu, Chen-Xu
    Wang, Xinghao
    Liu, Weiming
    Yang, Yi-Fan
    Yu, Gui-Lan
    Liu, Zhanli
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269