State-of-health estimation for lithium-ion batteries based on Kullback-Leibler divergence and a retentive network☆

被引:0
|
作者
Chen, Guanxu [1 ,2 ]
Yang, Fangfang [1 ,2 ]
Peng, Weiwen [1 ,2 ]
Fan, Yuqian [3 ]
Lyu, Ximin [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen Campus, Guangzhou 518107, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou, Guangdong, Peoples R China
[3] Henan Inst Sci & Technol, Sch Comp Sci & Technol, Xinxiang 453003, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Kullback-Leibler divergence; Retentive network; State-of-health estimation; INCREMENTAL CAPACITY ANALYSIS; ON-BOARD STATE; ENTROPY; CHARGE; CELLS;
D O I
10.1016/j.apenergy.2024.124266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state-of-health (SOH) estimation is crucial for the lithium-ion battery industry, as it underpins the safety, durability, and reliability of lithium-ion batteries. Currently, most researchers use various methods of health indicator (HI) extraction for the SOH estimation of batteries. However, these methods may require certain expertise and prior knowledge to achieve accurate modeling, being affected by measurement noise and other factors. To solve the abovementioned problems, three Kullback-Leibler (KL) divergence features based on partial voltage sequences are proposed as new HIs that are independent of prior knowledge and strongly correlated with SOH. Moreover, a modified retentive network is proposed to enhance SOH estimation accuracy and better utilize HIs than traditional deep learning methods, which have high training costs and insufficient accuracy. To ensure consistent extraction of KL divergence features across various experimental conditions and time intervals, a B-spline algorithm is utilized for interpolation. The effectiveness of the proposed method is validated through analysis of Pearson correlation coefficients and experiments conducted in four dimensions. Additionally, the potential of using the proposed method to compress data on the cloud-side is explored.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR
    Guo, Yongfang
    Huang, Kai
    Yu, Xiangyuan
    Wang, Yashuang
    ELECTROCHIMICA ACTA, 2022, 428
  • [42] Degradation mechanism analysis and State-of-Health estimation for lithium-ion batteries based on distribution of relaxation times
    Zhang, Qi
    Wang, Dafang
    Schaltz, Erik
    Stroe, Daniel-Ioan
    Gismero, Alejandro
    Yang, Bowen
    Journal of Energy Storage, 2022, 55
  • [43] State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis
    Li, Yuanyuan
    Sheng, Hanmin
    Cheng, Yuhua
    Stroe, Daniel-Ioan
    Teodorescu, Remus
    APPLIED ENERGY, 2020, 277
  • [44] A Two-Stage Estimation Strategy Based on a Multistate Model for State-of-Health of Lithium-Ion Batteries
    Zhang, Xuexia
    Dong, Sidi
    Huang, Ruike
    Huang, Lei
    Shi, Zhaobin
    Meng, Yilin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (04): : 7996 - 8008
  • [45] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [46] State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach
    Yun, Zhonghua
    Qin, Wenhu
    Shi, Weipeng
    Ping, Peng
    ENERGIES, 2020, 13 (18)
  • [47] State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion
    Xu, Jinli
    Liu, Baolei
    Zhang, Guangya
    Zhu, Jiwei
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (01) : 383 - 397
  • [48] Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance
    Tan, Xiaojun
    Tan, Yuqing
    Zhan, Di
    Yu, Ze
    Fan, Yuqian
    Qiu, Jianzhi
    Li, Jun
    IEEE Access, 2020, 8 : 56811 - 56822
  • [49] A voltage reconstruction model based on partial charging curve for state-of-health estimation of lithium-ion batteries
    Yang, Sijia
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Gao, Yang
    Zhang, Linjing
    JOURNAL OF ENERGY STORAGE, 2021, 35
  • [50] Protocol for state-of-health prediction of lithium-ion batteries based on machine learning
    Shu, Xing
    Shen, Shiquan
    Shen, Jiangwei
    Zhang, Yuanjian
    Li, Guang
    Chen, Zheng
    Liu, Yonggang
    STAR PROTOCOLS, 2022, 3 (02):