DFDS: Data-Free Dual Substitutes Hard-Label Black-Box Adversarial Attack

被引:0
|
作者
Jiang, Shuliang [1 ]
He, Yusheng [1 ]
Zhang, Rui [1 ]
Kang, Zi [1 ]
Xia, Hui [1 ]
机构
[1] Ocean Univ China, Fac Informat Sci & Engn, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep neural networks; Adversarial attack; White-box/black-box attack; Transfer-based adversarial attacks; Adversarial examples;
D O I
10.1007/978-981-97-5498-4_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transfer-based hard-label black-box adversarial attacks, confront challenges in obtaining pertinent proxy datasets and demanding a substantial query volume to the target model without guaranteeing a high attack success rate. To address the challenges, we introduces the techniques of dual substitute model extraction and embedding space adversarial example search, proposing a novel hard-label black-box adversarial attack approach named Data-Free Dual Substitutes Hard-Label Black-Box Adversarial Attack (DFDS). This approach initially trains a generative adversarial network through adversarial training. This training is achieved without relying on proxy datasets, only depending on the hard-label outputs of the target model. Subsequently, it utilizes natural evolution strategy (NES) to conduct embedding space search for constructing the final adversarial examples. The comprehensive experimental results demonstrate that, under the same query volume, DFDS achieves higher attack success rates compared to baseline methods. In comparison to the state-of-the-art mixed-mechanism hard-label black-box attack approach DFMS-HL, DFDS exhibits significant improvements across the SVHN, CIFAR-10, and CIFAR-100 datasets. Significantly, in the targeted attack scenario on the CIFAR-10 dataset, the success rate reaches 76.59%, representing the highest enhancement of 21.99%.
引用
收藏
页码:274 / 285
页数:12
相关论文
共 50 条
  • [21] Dual stage black-box adversarial attack against vision transformer
    Wang, Fan
    Shao, Mingwen
    Meng, Lingzhuang
    Liu, Fukang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3367 - 3378
  • [22] SIMULATOR ATTACK plus FOR BLACK-BOX ADVERSARIAL ATTACK
    Ji, Yimu
    Ding, Jianyu
    Chen, Zhiyu
    Wu, Fei
    Zhang, Chi
    Sun, Yiming
    Sun, Jing
    Liu, Shangdong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 636 - 640
  • [23] Fuzzing-based hard-label black-box attacks against machine learning models
    Qin, Yi
    Yue, Chuan
    COMPUTERS & SECURITY, 2022, 117
  • [24] Amora: Black-box Adversarial Morphing Attack
    Wang, Run
    Juefei-Xu, Felix
    Guo, Qing
    Huang, Yihao
    Xie, Xiaofei
    Ma, Lei
    Liu, Yang
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1376 - 1385
  • [25] Adversarial Eigen Attack on Black-Box Models
    Zhou, Linjun
    Cui, Peng
    Zhang, Xingxuan
    Jiang, Yinan
    Yang, Shiqiang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15233 - 15241
  • [26] A black-Box adversarial attack for poisoning clustering
    Cina, Antonio Emanuele
    Torcinovich, Alessandro
    Pelillo, Marcello
    PATTERN RECOGNITION, 2022, 122
  • [27] Saliency Attack: Towards Imperceptible Black-box Adversarial Attack
    Dai, Zeyu
    Liu, Shengcai
    Li, Qing
    Tang, Ke
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (03)
  • [28] TextCheater: A Query-Efficient Textual Adversarial Attack in the Hard-Label Setting
    Peng, Hao
    Guo, Shixin
    Zhao, Dandan
    Zhang, Xuhong
    Han, Jianmin
    Ji, Shouling
    Yang, Xing
    Zhong, Ming
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 3901 - 3916
  • [29] Black-Box Attacks on Sequential Recommenders via Data-Free Model Extraction
    Yue, Zhenrui
    He, Zhankui
    Zeng, Huimin
    McAuley, Julian
    15TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS 2021), 2021, : 44 - 54
  • [30] Boosting Black-box Adversarial Attack with a Better Convergence
    Yin, Heng
    Wang, Jindong
    Mi, Yan
    Zhang, Xiaoning
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1234 - 1238