Graph contrastive learning with consistency regularization

被引:0
|
作者
Lee, Soohong [1 ,2 ]
Lee, Sangho [1 ,2 ]
Lee, Jaehwan [1 ,2 ]
Lee, Woojin [3 ]
Son, Youngdoo [1 ,2 ]
机构
[1] Dongguk Univ Seoul, Dept Ind & Syst Engn, Seoul 04620, South Korea
[2] Dongguk Univ Seoul, Data Sci Lab DSLAB, Seoul 04620, South Korea
[3] Dongguk Univ Seoul, Sch AI Convergence, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Contrastive learning; Class collision; Consistency regularization; Graph representation learning; Graph neural network;
D O I
10.1016/j.patrec.2024.03.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrastive learning has actively been used for unsupervised graph representation learning owing to its success in computer vision. Most graph contrastive learning methods use instance discrimination. It treats each instance as a distinct class against a query instance as the pretext task. However, such methods inevitably cause a class collision problem because some instances may belong to the same class as the query. Thus, the similarity shared through instances from the same class cannot be reflected in the pre-training stage. To address this problem, we propose graph contrastive learning with consistency regularization (GCCR), which introduces consistency regularization term to graph contrastive learning. Unlike existing methods, GCCR can obtain graph representation that reflects intra-class similarity by introducing a consistency regularization term. To verify the effectiveness of the proposed method, we performed extensive experiments and demonstrated that GCCR improved the quality of graph representations for most datasets. Notably, experimental results in various settings show that the proposed method can learn effective graph representations with better robustness against transformations than other state-of-the-art methods.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 50 条
  • [31] Graph Contrastive Learning with Constrained Graph Data Augmentation
    Xu, Shaowu
    Wang, Luo
    Jia, Xibin
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10705 - 10726
  • [32] HeterGCL: Graph Contrastive Learning Framework on Heterophilic Graph
    Wang, Chenhao
    Liu, Yong
    Yang, Yan
    Lie, Wei
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 2397 - 2405
  • [33] Graph Contrastive Learning with Graph Info-Min
    Meng, En
    Liu, Yong
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4195 - 4199
  • [34] Graph Contrastive Learning with Constrained Graph Data Augmentation
    Shaowu Xu
    Luo Wang
    Xibin Jia
    Neural Processing Letters, 2023, 55 : 10705 - 10726
  • [35] Adversarial Graph Augmentation to Improve Graph Contrastive Learning
    Suresh, Susheel
    Li, Pan
    Hao, Cong
    Neville, Jennifer
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [36] Sparse Graph Transformer With Contrastive Learning
    Zhang, Chun-Yang
    Fang, Wu-Peng
    Cai, Hai-Chun
    Chen, C. L. Philip
    Lin, Yue-Na
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01): : 892 - 904
  • [37] A Good View for Graph Contrastive Learning
    Chen, Xueyuan
    Li, Shangzhe
    ENTROPY, 2024, 26 (03)
  • [38] Graph Contrastive Learning with Adaptive Augmentation
    Zhu, Yanqiao
    Xu, Yichen
    Yu, Feng
    Liu, Qiang
    Wu, Shu
    Wang, Liang
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 2069 - 2080
  • [39] Certifiably Robust Graph Contrastive Learning
    Lin, Minhua
    Xiao, Teng
    Dai, Enyan
    Zhang, Xiang
    Wang, Suhang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [40] Prototypical Graph Contrastive Learning for Recommendation
    Wei, Tao
    Yang, Changchun
    Zheng, Yanqi
    APPLIED SCIENCES-BASEL, 2025, 15 (04):