Partial degrees on matchings for cycles in bipartite graphs

被引:0
|
作者
Wang, Hong [1 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
关键词
Disjoint cycles; Coverings; Matchings; DISJOINT CYCLES;
D O I
10.1016/j.disc.2024.114142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V-1 ,V-2 ; E) be a bipartite graph with vertical bar V-1 vertical bar = vertical bar V-2 vertical bar = n . Let M be a matching of G with vertical bar M vertical bar >= 2. Let V(M) denote the set of vertices that are incident with edges of M . We show that if d(x) >= 3n/4 for each x is an element of V(M) and vertical bar M vertical bar > n/4 + 1 with n >= 5 then G contains a cycle covering M and G contains left perpendicular(vertical bar M vertical bar - 1)/2right perpendicular disjoint cycles covering M such that each of the left perpendicular(vertical bar M vertical bar - 1)/2right perpendicular cycles contains at least two edges of M . When vertical bar M vertical bar <= n/4 + 1 or n < 5, the same conclusion holds unless vertical bar M vertical bar is odd and G belongs to one known class of bipartite graphs. We conjecture that if vertical bar M vertical bar > 3n/8, n >= 5 and d(x) >= 3n/4 for each x is an element of V (M) then for any integer partition vertical bar M vertical bar = m(1) + center dot center dot center dot + m (k) with m(i) >= 2 for all i is an element of{1, ..., k}, G contains k disjoint cycles C-1, ..., C-k such that C-i contains m(i) edges of M for all i is an element of{ 1 , ... , k } , unless G belongs to one known class of bipartite graphs. If the conjecture is true, then the lower bound on vertical bar M vertical bar is sharp in general. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Kasteleyn cokernels and perfect matchings on planar bipartite graphs
    Taylor, Libby
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (03) : 727 - 737
  • [42] Perfect matchings in random subgraphs of regular bipartite graphs
    Glebov, Roman
    Luria, Zur
    Simkin, Michael
    JOURNAL OF GRAPH THEORY, 2021, 97 (02) : 208 - 231
  • [43] Fast Dynamic Weight Matchings in Convex Bipartite Graphs
    Zu, Quan
    Zhang, Miaomiao
    Yu, Bin
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 601 - 612
  • [44] Limit Shape of Perfect Matchings on Contracting Bipartite Graphs
    Li, Zhongyang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) : 9173 - 9208
  • [45] Semi-matchings for bipartite graphs and load balancing
    Harvey, NJA
    Ladner, RE
    Lovász, L
    Tamir, T
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2003, 2748 : 294 - 306
  • [46] Number of maximum matchings of bipartite graphs with positive surplus
    Liu, Y
    Liu, GZ
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 311 - 318
  • [47] Large matchings in bipartite graphs have a rainbow matching
    Kotlar, Daniel
    Ziv, Ran
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 38 : 97 - 101
  • [48] On definable matchings in o-minimal bipartite graphs
    Marikova, Jana
    FUNDAMENTA MATHEMATICAE, 2024, 264 (01) : 85 - 102
  • [49] The heterochromatic matchings in edge-colored bipartite graphs
    Li, Hao
    Li, Xuehang
    Liu, Guizhen
    Wang, Guanghui
    ARS COMBINATORIA, 2009, 93 : 129 - 139
  • [50] Semi-matchings for bipartite graphs and load balancing
    Harvey, NJA
    Ladner, RE
    Lovász, L
    Tarnir, T
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2006, 59 (01): : 53 - 78