Partial degrees on matchings for cycles in bipartite graphs

被引:0
|
作者
Wang, Hong [1 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
关键词
Disjoint cycles; Coverings; Matchings; DISJOINT CYCLES;
D O I
10.1016/j.disc.2024.114142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V-1 ,V-2 ; E) be a bipartite graph with vertical bar V-1 vertical bar = vertical bar V-2 vertical bar = n . Let M be a matching of G with vertical bar M vertical bar >= 2. Let V(M) denote the set of vertices that are incident with edges of M . We show that if d(x) >= 3n/4 for each x is an element of V(M) and vertical bar M vertical bar > n/4 + 1 with n >= 5 then G contains a cycle covering M and G contains left perpendicular(vertical bar M vertical bar - 1)/2right perpendicular disjoint cycles covering M such that each of the left perpendicular(vertical bar M vertical bar - 1)/2right perpendicular cycles contains at least two edges of M . When vertical bar M vertical bar <= n/4 + 1 or n < 5, the same conclusion holds unless vertical bar M vertical bar is odd and G belongs to one known class of bipartite graphs. We conjecture that if vertical bar M vertical bar > 3n/8, n >= 5 and d(x) >= 3n/4 for each x is an element of V (M) then for any integer partition vertical bar M vertical bar = m(1) + center dot center dot center dot + m (k) with m(i) >= 2 for all i is an element of{1, ..., k}, G contains k disjoint cycles C-1, ..., C-k such that C-i contains m(i) edges of M for all i is an element of{ 1 , ... , k } , unless G belongs to one known class of bipartite graphs. If the conjecture is true, then the lower bound on vertical bar M vertical bar is sharp in general. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Disjoint cycles covering matchings in graphs with partial degrees
    Wang, Hong
    JOURNAL OF GRAPH THEORY, 2020, 93 (03) : 450 - 457
  • [2] Disjoint cycles covering specified vertices in bipartite graphs with partial degrees
    Jiang, Suyun
    Yan, Jin
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 439
  • [3] A Note on Matchings of Bipartite Graphs
    蔡小涛
    应用数学, 1991, (01) : 97 - 100
  • [4] Coloured matchings in bipartite graphs
    Cameron, K
    DISCRETE MATHEMATICS, 1997, 169 (1-3) : 205 - 209
  • [5] INDUCED MATCHINGS IN BIPARTITE GRAPHS
    FAUDREE, RJ
    GYARFAS, A
    SCHELP, RH
    TUZA, Z
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 83 - 87
  • [6] Perfect matchings in regular bipartite graphs
    Katerinis, P
    Tsikopoulos, N
    GRAPHS AND COMBINATORICS, 1996, 12 (04) : 327 - 331
  • [7] ACYCLIC MATCHINGS IN SUBCLASSES OF BIPARTITE GRAPHS
    Panda, B. S.
    Pradhan, D.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (04)
  • [8] Dynamic matchings in convex bipartite graphs
    Brodal, Gerth Stolting
    Georgiadis, Loukas
    Hansen, Kristoffer Arnsfelt
    Katriel, Irit
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 406 - +
  • [9] Optimum matchings in weighted bipartite graphs
    Valencia C.E.
    Vargas M.C.
    Boletín de la Sociedad Matemática Mexicana, 2016, 22 (1) : 1 - 12
  • [10] REPRESENTATION OF LARGE MATCHINGS IN BIPARTITE GRAPHS
    Aharoni, Ron
    Kotlar, Dani
    Ziv, Ran
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (03) : 1726 - 1731