Mitigating thermal runaway propagation in high specific energy lithium-ion battery modules through nanofiber aerogel composite material

被引:4
|
作者
Wong, Shaw Kang [1 ]
Li, Kuijie [1 ,2 ]
Rui, Xinyu [1 ]
Fan, Liyun [2 ]
Ouyang, Minggao [1 ]
Feng, Xuning [1 ]
机构
[1] Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[2] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
关键词
Lithium ion battery; Battery safety; Thermal runaway propagation; Nanofiber aerogel; Energy storage; TECHNOLOGY;
D O I
10.1016/j.energy.2024.132353
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal runaway and its propagation within lithium-ion battery systems pose significant challenges to widespread adoption in electric vehicles and energy storage systems. Deploying a thermal barrier between adjacent batteries is a common and effective strategy to prevent thermal propagation. This experimental study evaluates the inhibitory effect of nanofiber aerogel on thermal propagation within high-energy-density lithium-ion battery modules. The results indicate that increasing the thickness of nanofiber aerogel prolongs the average time interval between thermal runaway propagation events between adjacent batteries and increases their peak temperature difference, while the maximum surface temperature of each battery exhibits an overall downward trend. Specifically, compared to no nanofiber aerogel, a 0.5 mm nanofiber aerogel extends the average propagation time by 2 times, and a 1.0 mm nanofiber aerogel successfully prevents thermal propagation from the third to the fourth battery, with an average time extension of nearly 6 times. Furthermore, it is found that thermal runaway propagation can be effectively prevented when the aerogel thickness exceeds 2.0 mm. The microstructure of both fresh and damaged nanofiber aerogels was examined using Scanning Electron Microscopy to validate and analyze their robust durability. This study provides valuable insights for designing safer high-energy-density battery systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Thermal Failure Propagation in Lithium-Ion Battery Modules with Various Shapes
    Ouyang, Dongxu
    Liu, Jiahao
    Chen, Mingyi
    Weng, Jingwen
    Wang, Jian
    APPLIED SCIENCES-BASEL, 2018, 8 (08):
  • [32] Effects of heating position on the thermal runaway propagation of a lithium-ion battery module in a battery enclosure
    Li, Zijian
    Zhang, Peihong
    Shang, Rongxue
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [33] Battery material thermal instability and side reaction for lithium-ion battery thermal runaway: A short review
    Ding, Yan
    Lu, Li
    Zhang, Huangwei
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)
  • [34] Experimental study on thermal runaway propagation of lithium-ion battery modules with different parallel-series hybrid connections
    Xu, Chengshan
    Zhang, Fangshu
    Feng, Xuning
    Jiang, Fachao
    Ren, Dongsheng
    Lu, Languang
    Yang, Yang
    Liu, Guanwei
    Han, Xuebing
    Friess, Benedikt
    Ouyang, Minggao
    JOURNAL OF CLEANER PRODUCTION, 2021, 284
  • [35] Dynamic thermophysical modeling of thermal runaway propagation and parametric sensitivity analysis for large format lithium-ion battery modules
    Wang, Huaibin
    Liu, Bo
    Xu, Chengshan
    Jin, Changyong
    Li, Kuijie
    Du, Zhiming
    Wang, Qinzheng
    Ouyang, Minggao
    Feng, Xuning
    JOURNAL OF POWER SOURCES, 2022, 520
  • [36] An experimental study on thermal runaway propagation over cyclic aging lithium-ion battery modules with different electrical connections
    Zhao, Luyao
    Han, Zhuxin
    Guo, Wang
    Qiao, Zurong
    Qiu, Hongyu
    Liu, Hong
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [37] Analysis of thermal runaway propagation characteristics of lithium-ion battery module under local high temperature
    Hu, Tong
    Ma, Fei
    Xu, Xiaoming
    HIGH TEMPERATURES-HIGH PRESSURES, 2022, 51 (03) : 195 - 212
  • [38] Thermal behaviour and thermal runaway propagation in lithium-ion battery systems-A critical review
    Mallick, Soumyoraj
    Gayen, Debabrata
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [39] An Experimental Study on Preventing Thermal Runaway Propagation in Lithium-Ion Battery Module Using Aerogel and Liquid Cooling Plate Together
    Xiaolong Yang
    Yongkang Duan
    Xuning Feng
    Tianyu Chen
    Chengshan Xu
    Xinyu Rui
    Minggao Ouyang
    Languang Lu
    Xuebing Han
    Dongsheng Ren
    Zeping Zhang
    Cheng Li
    Shang Gao
    Fire Technology, 2020, 56 : 2579 - 2602
  • [40] Study on the Blocking Effect of Aerogel Felt Thickness on Thermal Runaway Propagation of Lithium-Ion Batteries
    Quanyi Liu
    Qian Zhu
    Wentian Zhu
    Xiaoying Yi
    Fire Technology, 2023, 59 : 381 - 399