MPSDynamics.jl: Tensor network simulations for finite-temperature (non-Markovian) open quantum system dynamics

被引:8
|
作者
Lacroix, Thibaut [1 ,2 ]
Le De, Brieuc [3 ]
Riva, Angela [4 ]
Dunnett, Angus J. [5 ]
Chin, Alex W. [3 ]
机构
[1] Univ Ulm, Inst Theoret Phys, Albert Einstein Allee 11, D-89081 Ulm, Germany
[2] Univ Ulm, QST, Albert Einstein Allee 11, D-89081 Ulm, Germany
[3] Sorbonne Univ, Inst Nanosci Paris, CNRS, 4 Pl Jussieu, F-75005 Paris, France
[4] Sorbonne Univ, Univ PSL,MINES ParisTech,CNRS, Ecole Normale Super,Dept Phys,Inria, Ctr Automatique & Syst CAS,LPENS, F-75005 Paris, France
[5] Multiverse Comp, 7 rue Croix Martre, F-91120 Palaiseau, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 161卷 / 08期
关键词
STATES;
D O I
10.1063/5.0223107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The MPSDynamics.jl package provides an easy-to-use interface for performing open quantum systems simulations at zero and finite temperatures. The package has been developed with the aim of studying non-Markovian open system dynamics using the state-of-the-art numerically exact Thermalized-Time Evolving Density operator with Orthonormal Polynomials Algorithm based on environment chain mapping. The simulations rely on a tensor network representation of the quantum states as matrix product states (MPS) and tree tensor network states. Written in the Julia programming language, MPSDynamics.jl is a versatile open-source package providing a choice of several variants of the Time-Dependent Variational Principle method for time evolution (including novel bond-adaptive one-site algorithms). The package also provides strong support for the measurement of single and multi-site observables, as well as the storing and logging of data, which makes it a useful tool for the study of many-body physics. It currently handles long-range interactions, time-dependent Hamiltonians, multiple environments, bosonic and fermionic environments, and joint system-environment observables.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems
    Liu, Bi-Heng
    Li, Li
    Huang, Yun-Feng
    Li, Chuan-Feng
    Guo, Guang-Can
    Laine, Elsi-Mari
    Breuer, Heinz-Peter
    Piilo, Jyrki
    NATURE PHYSICS, 2011, 7 (12) : 931 - 934
  • [32] Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems
    Bi-Heng Liu
    Li Li
    Yun-Feng Huang
    Chuan-Feng Li
    Guang-Can Guo
    Elsi-Mari Laine
    Heinz-Peter Breuer
    Jyrki Piilo
    Nature Physics, 2011, 7 : 931 - 934
  • [33] Quantum correlations in non-Markovian open quantum systems at different ranges of temperature
    Berrada, K.
    Eleuch, H.
    LASER PHYSICS, 2018, 28 (08)
  • [34] Non-Markovian dynamics of multipartite open quantum systems with internal interactions
    Liu, Boyang
    Dai, Hong-Yi
    Chen, Xi
    Zhang, Ming
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (04):
  • [35] Comment on "General Non-Markovian Dynamics of Open Quantum Systems" Reply
    Zhang, Wei-Min
    Lo, Ping-Yuan
    Xiong, Heng-Na
    Tu, Matisse Wei-Yuan
    Nori, Franco
    PHYSICAL REVIEW LETTERS, 2015, 115 (16)
  • [36] Exact Dynamics of Nonadditive Environments in Non-Markovian Open Quantum Systems
    Gribben, Dominic
    Rouse, Dominic M.
    Iles-Smith, Jake
    Strathearn, Aidan
    Maguire, Henry
    Kirton, Peter
    Nazir, Ahsan
    Gauger, Erik M.
    Lovett, Brendon W.
    PRX QUANTUM, 2022, 3 (01):
  • [37] A numerical simulation algorithm for Non-Markovian dynamics in open quantum systems
    Li, Ming
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1252 - 1256
  • [38] Non-Markovian dynamics of time-fractional open quantum systems
    Wei, Dongmei
    Liu, Hailing
    Li, Yongmei
    Wan, Linchun
    Qin, Sujuan
    Wen, Qiaoyan
    Gao, Fei
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [39] Non-markovian mesoscopic dissipative dynamics of open quantum spin chains
    Benatti, F.
    Carollo, F.
    Floreanini, R.
    Narnhofer, H.
    PHYSICS LETTERS A, 2016, 380 (03) : 381 - 389
  • [40] Tensor-network-based machine learning of non-Markovian quantum processes
    Guo, Chu
    Modi, Kavan
    Poletti, Dario
    PHYSICAL REVIEW A, 2020, 102 (06)