advection-diffusion equation;
discrete strong extremum principle;
finite element method;
general triangular meshes;
nonlinear correction;
DIMINISHING SOLD METHODS;
MAXIMUM PRINCIPLE;
SPURIOUS OSCILLATIONS;
VOLUME METHOD;
EQUATIONS;
SCHEME;
STABILIZATION;
D O I:
10.1002/fld.5330
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
A nonlinear correction technique for finite element methods of advection-diffusion problems on general triangular meshes is introduced. The classic linear finite element method is modified, and the resulting scheme satisfies discrete strong extremum principle unconditionally, which means that it is unnecessary to impose the well-known restrictions on diffusion coefficients and geometry of mesh-cell (e.g., "acute angle" condition), and we need not to perform upwind treatment on the advection term separately. Moreover, numerical example shows that when a discrete scheme does not satisfy the strong extremum principle, even if it maintains the global physical bound, non-physical numerical oscillations may still occur within local regions where no numerical result is beyond the physical bound. Thus, it is worth to point out that our new nonlinear finite element scheme can avoid non-physical oscillations around sharp layers in advection-dominate regions, due to maintaining discrete strong extremum principle. Convergence rates are verified by numerical tests for both diffusion-dominate and advection-dominate problems. 1. We proposed a new nonlinear finite element methods for advection-diffusion problems. 2. The new method preserving the discrete strong extremum principle unconditionally. 3. Our method is free from non-physical numerical oscillations with advection dominate regions. image
机构:
Stanford Univ, ICME, Stanford, CA 94305 USAStanford Univ, ICME, Stanford, CA 94305 USA
Kalashnikova, Irina
Farhat, Charbel
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, ICME, Stanford, CA 94305 USA
Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USAStanford Univ, ICME, Stanford, CA 94305 USA
Farhat, Charbel
Tezaur, Radek
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USAStanford Univ, ICME, Stanford, CA 94305 USA
机构:
Univ Nacl Autonoma Mexico, Ctr Ciencas Atmosfera, Av Univ 3000, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Ctr Ciencas Atmosfera, Av Univ 3000, Mexico City 04510, DF, Mexico
Skiba, Yuri N.
Cruz-Rodriguez, Roberto C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Posgrad Ciencias Tierra, Mexico City, DF, MexicoUniv Nacl Autonoma Mexico, Ctr Ciencas Atmosfera, Av Univ 3000, Mexico City 04510, DF, Mexico
Cruz-Rodriguez, Roberto C.
Filatov, Denis M.
论文数: 0引用数: 0
h-index: 0
机构:
Scept Sci Ltd, Stockport, Cheshire, EnglandUniv Nacl Autonoma Mexico, Ctr Ciencas Atmosfera, Av Univ 3000, Mexico City 04510, DF, Mexico
机构:
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090
Kuzin V.I.
Kravtchenko V.V.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State University, Novosibirsk 630090Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090