Monitoring the Behavior of Na Ions and Solid Electrolyte Interphase Formation at an Aluminum/Ionic Liquid Electrode/Electrolyte Interface via Operando Electrochemical X-ray Photoelectron Spectroscopy

被引:1
|
作者
Lee, Roxy [1 ]
Nunney, Tim S. [2 ]
Isaacs, Mark [1 ,3 ]
Palgrave, Robert G. [1 ]
Dey, Avishek [1 ,4 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Felbridge Ctr, Unit 1, Thermo Fisher Sci, E Grinstead RH19 1XP, W Sussex, England
[3] Rutherford Appleton Lab, HarwellXPS, Res Complex Harwell, Didcot OX11 0FA, England
[4] Faraday Inst, Quad One, Harwell Sci & Innovat Campus, Didcot OX11 0RA, England
基金
英国工程与自然科学研究理事会;
关键词
XPS; operando; cyclic voltammetry; SEI; sodium ion; ionic liquid; IN-SITU; BATTERIES; SODIUM; XPS;
D O I
10.1021/acsami.4c02241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In electrochemical energy storage devices, the interface between the electrode and the electrolyte plays a crucial role. A solid electrolyte interphase (SEI) is formed on the electrode surface due to spontaneous decomposition of the electrolyte, which in turn controls the dynamics of ion migration during charge and discharge cycles. However, the dynamic nature of the SEI means that its chemical structure evolves over time and as a function of the applied bias; thus, a true operando study is extremely valuable. X-ray photoelectron spectroscopy (XPS) is a widely used technique to understand the surface electronic and chemical properties, but the use of ultrahigh vacuum in standard instruments is a major hurdle for their utilization in measuring wet electrochemical processes. Herein, we introduce a 3-electrode electrochemical cell to probe the behavior of Na ions and the formation of SEI at the interface of an ionic liquid (IL) electrolyte and an aluminum electrode under operando conditions. A system containing 0.5 molar NaTFSI dissolved in the IL [BMIM][TFSI] was investigated using an Al working electrode and Pt counter and reference electrodes. By optimizing the scan rate of both XPS and cyclic voltammetry (CV) techniques, we captured the formation and evolution of SEI chemistry using real-time spectra acquisition techniques. A CV scan rate of 2 mVs(-1) was coupled with XPS snapshot spectra collected at 10 s per core level. The technique demonstrated here provides a platform for the chemical analysis of materials beyond batteries.
引用
收藏
页码:35675 / 35685
页数:11
相关论文
共 50 条
  • [21] Electrowetting of Ionic Liquid on Graphite: Probing via in Situ Electrochemical X-ray Photoelectron Spectroscopy
    Panhwar, Ghulam M.
    Mysyk, Roman
    Rojo, Teofilo
    Shaikhutdinov, Shamil
    Bondarchuk, Oleksandr
    LANGMUIR, 2018, 34 (48) : 14528 - 14536
  • [22] Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells
    Volkov, Sergey
    Vonk, Vedran
    Khorshidi, Navid
    Franz, Dirk
    Kubicek, Markus
    Kilic, Volkan
    Felici, Roberto
    Huber, Tobias M.
    Navickas, Edvinas
    Rupp, Ghislain M.
    Fleig, Juergen
    Stierle, Andreas
    CHEMISTRY OF MATERIALS, 2016, 28 (11) : 3727 - 3733
  • [23] Investigation of the Electrode/Ionic Liquid Interphase: Chemical Reactions of an Ionic Liquid and a Lithium Salt with Lithiated Graphite Probed by X-ray Photoelectron Spectroscopy
    Liu, Zhen
    Li, Guozhu
    Borodin, Andriy
    Liu, Xiaoxu
    Li, Yao
    Endres, Frank
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (16): : 10325 - 10332
  • [24] Probing the solid/gas and solid/liquid electrochemical interfaces using in situ/operando ambient pressure X-ray photoelectron spectroscopy
    Crumlin, Ethan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [25] Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy
    Malmgren, S.
    Ciosek, K.
    Hahlin, M.
    Gustafsson, T.
    Gorgoi, M.
    Rensmo, H.
    Edstrom, K.
    ELECTROCHIMICA ACTA, 2013, 97 : 23 - 32
  • [26] Evolution of the solid electrolyte interphase on tin phosphide anodes in sodium ion batteries probed by hard x-ray photoelectron spectroscopy
    Mogensen, Ronnie
    Maibach, Julia
    Brant, William R.
    Brandell, Daniel
    Younesi, Reza
    ELECTROCHIMICA ACTA, 2017, 245 : 696 - 704
  • [27] X-RAY PHOTOELECTRON-SPECTROSCOPY STUDY OF THE FORMATION OF THE MEROCYANINE ALUMINUM INTERFACE
    ZHANG, YD
    HUANG, SY
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1991, 9 (06): : 2941 - 2947
  • [28] Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries
    Young, Benjamin T.
    Heskett, David R.
    Nguyen, Cao Cuong
    Nie, Mengyun
    Woicik, Joseph C.
    Lucht, Brett L.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (36) : 20004 - 20011
  • [29] Radiation damage of liquid electrolyte during focused X-ray beam photoelectron spectroscopy
    Arble, Christopher
    Guo, Hongxuan
    Strelcov, Evgheni
    Hoskins, Brian
    Zeller, Patrick
    Amati, Matteo
    Gregoratti, Luca
    Kolmakov, Andrei
    SURFACE SCIENCE, 2020, 697 (697)
  • [30] In-situ/operando X-ray absorption spectroscopic investigation of the electrode/electrolyte interface on the molecular scale
    Kao, Li Cheng
    Feng, Xuefei
    Ha, Yang
    Yang, Feipeng
    Liu, Yi-Sheng
    Hahn, Nathan T.
    MacDougall, James
    Chao, Weilun
    Yang, Wanli
    Zavadil, Kevin R.
    Guo, Jinghua
    SURFACE SCIENCE, 2020, 702