Incorporating telemetry information into capture-recapture analyses improves precision and accuracy of abundance estimates given spatiotemporally biased recapture effort

被引:0
|
作者
Badger, Janelle J. [1 ]
Johnson, Devin S. [1 ]
Baird, Robin W. [2 ]
Bradford, Amanda L. [1 ]
Kratofil, Michaela A. [2 ,3 ,4 ]
Mahaffy, Sabre D. [2 ]
Oleson, Erin M. [1 ]
机构
[1] NOAA, Pacific Isl Fisheries Sci Ctr, NMFS, Honolulu, HI 20230 USA
[2] Cascadia Res Collect, Olympia, WA USA
[3] Oregon State Univ, Marine Mammal Inst, Newport, OR USA
[4] Oregon State Univ, Dept Fisheries Wildlife & Conservat Sci, Corvallis, OR USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2024年 / 15卷 / 10期
关键词
capture-recapture; data integration; false killer whales; Jolly-Seber; telemetry; FALSE KILLER WHALES; MAIN HAWAIIAN-ISLANDS; HABITAT USE; BIOLOGICAL DIVERSITY; UNEQUAL CATCHABILITY; DENSITY-ESTIMATION; HOME-RANGE; POPULATION; MODELS; MOVEMENTS;
D O I
10.1111/2041-210X.14408
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Natural populations that are rare, cryptic or inaccessible provide a monumental challenge to monitoring, as adequate data are extremely difficult to collect. Surveys often encompass only a small portion of a population's range due to difficult terrain or inclement weather, especially for populations with extensive ranges. Thus, to maximise encounters, sampling efforts may be largely opportunistic or biased to accessible areas. The resulting sparse and spatially biased data may be difficult to model, standardise across years and incorporate into an assessment or management framework. However, in many monitoring programs, there are usually multiple threads of data that, though each may have its own limitations, can be synthesised to reveal important ecological processes. Here, we demonstrate a simple technique to incorporate two additional streams of data on the same population, telemetry and survey effort data, into capture-recapture analyses to address spatiotemporal sampling bias using simulated data. Utilisation distributions (UDs) computed from telemetry data are overlaid with UDs of survey efforts, providing an 'effort by animal space use' overlap covariate for modelling detection in a Jolly-Seber open population model. Using simulated data, we found that our method resulted in more accurate and precise estimates of abundance than traditional capture-recapture models. We then applied this method to a 16 year photo-identification capture-recapture dataset (n = 143 individuals) along with telemetry data (n = 44 satellite tag deployments) collected from the endangered population of false killer whales resident to the main Hawaiian Islands. Incorporating space use and effort into this analysis improved precision of abundance estimates relative to previous modelling endeavours.
引用
收藏
页码:1847 / 1858
页数:12
相关论文
共 34 条
  • [21] Improved female abundance and reproductive parameter estimates through subpopulation-scale genetic capture-recapture of loggerhead turtles
    Brian M. Shamblin
    Mark G. Dodd
    DuBose B. Griffin
    S. Michelle Pate
    Matthew H. Godfrey
    Michael S. Coyne
    Kristina L. Williams
    Joseph B. Pfaller
    Breanna L. Ondich
    Kimberly M. Andrews
    Ruth Boettcher
    Campbell J. Nairn
    Marine Biology, 2017, 164
  • [22] Improved female abundance and reproductive parameter estimates through subpopulation-scale genetic capture-recapture of loggerhead turtles
    Shamblin, Brian M.
    Dodd, Mark G.
    Griffin, DuBose B.
    Pate, S. Michelle
    Godfrey, Matthew H.
    Coyne, Michael S.
    Williams, Kristina L.
    Pfaller, Joseph B.
    Ondich, Breanna L.
    Andrews, Kimberly M.
    Boettcher, Ruth
    Nairn, Campbell J.
    MARINE BIOLOGY, 2017, 164 (06)
  • [23] Combining camera-trapping and noninvasive genetic data in a spatial capture-recapture framework improves density estimates for the jaguar
    Sollmann, Rahel
    Torres, Natalia Mundim
    Furtado, Mariana Malzoni
    de Almeida Jacomo, Anah Tereza
    Palomares, Francisco
    Roques, Severine
    Silveira, Leandro
    BIOLOGICAL CONSERVATION, 2013, 167 : 242 - 247
  • [24] Accuracy of alternative approaches to capture-recapture estimates of disease frequency: Internal validity analysis of data from five sources
    Hook, EB
    Regal, RR
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2000, 152 (08) : 771 - 779
  • [25] Capture-recapture estimates of Hector's dolphin abundance at Banks Peninsula, New Zealand (vol 21, pg 204, 2005)
    Gormley, A. M.
    Dawson, S. M.
    Slooten, E.
    Braeger, S.
    MARINE MAMMAL SCIENCE, 2012, 28 (02) : 437 - 437
  • [26] Capture-recapture abundance and survival estimates of three cetacean species in Icelandic coastal waters using trained scientist-volunteers
    Bertulli, Chiara G.
    Guery, Lorelei
    McGinty, Niall
    Suzuki, Ailie
    Brannan, Naomi
    Marques, Tania
    Rasmussen, Marianne H.
    Gimenez, Olivier
    JOURNAL OF SEA RESEARCH, 2018, 131 : 22 - 31
  • [27] Juvenile and adult survival of Swainson's Thrush (Catharus ustulatus) in coastal California:: Annual estimates using capture-recapture analyses
    Gardali, T
    Barton, DC
    White, JD
    Geupel, GR
    AUK, 2003, 120 (04): : 1188 - 1194
  • [28] Precision and bias of spatial capture-recapture estimates: A multi-site, multi-year Utah black bear case study
    Schmidt, Greta M.
    Graves, Tabitha A.
    Pederson, Jordan C.
    Carroll, Sarah L.
    ECOLOGICAL APPLICATIONS, 2022, 32 (05)
  • [29] Modeling movements improves capture-recapture estimates for mobile species with sparse data: Polar bears (Ursus maritimus) in Viscount Melville sound
    Regehr, Eric V.
    Baryluk, Steven
    Boulanger, John
    Branigan, Marsha
    d'Eon-Eggertson, Faye
    Pongracz, Jodie
    Thom, Adam
    Richardson, Evan S.
    POPULATION ECOLOGY, 2024,
  • [30] Spatially explicit capture recapture density estimates: Robustness, accuracy and precision in a long-term study of jaguars (Panthera onca)
    Harmsen, Bart J.
    Foster, Rebecca J.
    Quigley, Howard
    PLOS ONE, 2020, 15 (06):