A Variational Approach to Bayesian Phylogenetic Inference

被引:0
|
作者
Zhang, Cheng [1 ,2 ]
Matsen IV, Frederick A. [3 ,4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[4] Univ Washington, Dept Stat, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Bayesian phylogenetic inference; variational inference; subsplit Bayesian networks; structured amortization; POPULATION-DYNAMICS; DNA-SEQUENCES; F-DIVERGENCE; LIKELIHOOD; MODEL; DISTRIBUTIONS; EXPLORATION; PROPOSALS; EVOLUTION; HISTORY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bayesian phylogenetic inference is currently done via Markov chain Monte Carlo (MCMC) with simple proposal mechanisms. This hinders exploration efficiency and often requires long runs to deliver accurate posterior estimates. In this paper, we present an alternative approach: a variational framework for Bayesian phylogenetic analysis. We propose combining subsplit Bayesian networks, an expressive graphical model for tree topology distributions, and a structured amortization of the branch lengths over tree topologies for a suitable variational family of distributions. We train the variational approximation via stochastic gradient ascent and adopt gradient estimators for continuous and discrete variational parameters separately to deal with the composite latent space of phylogenetic models. We show that our variational approach provides competitive performance to MCMC, while requiring much fewer (though more costly) iterations due to a more efficient exploration mechanism enabled by variational inference. Experiments on a benchmark of challenging real data Bayesian phylogenetic inference problems demonstrate the effectiveness and efficiency of our methods.
引用
收藏
页码:1 / 56
页数:56
相关论文
共 50 条
  • [31] Variational Bayesian inference for network autoregression models
    Lai, Wei-Ting
    Chen, Ray-Bing
    Chen, Ying
    Koch, Thorsten
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 169
  • [32] Variational and stochastic inference for Bayesian source separation
    Cemgil, A. Taylan
    Fevotte, Cedric
    Godsill, Simon J.
    DIGITAL SIGNAL PROCESSING, 2007, 17 (05) : 891 - 913
  • [33] Variational Inference for Nonparametric Bayesian Quantile Regression
    Abeywardana, Sachinthaka
    Ramos, Fabio
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1686 - 1692
  • [34] VARIATIONAL BAYESIAN INFERENCE FOR PAIRWISE MARKOV MODELS
    Morales, Katherine
    Petetin, Yohan
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 251 - 255
  • [35] Particle Gibbs sampling for Bayesian phylogenetic inference
    Wang, Shijia
    Wang, Liangliang
    BIOINFORMATICS, 2021, 37 (05) : 642 - 649
  • [36] Variational Inference for Large Bayesian Vector Autoregressions
    Bernardi, Mauro
    Bianchi, Daniele
    Bianco, Nicolas
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (03) : 1066 - 1082
  • [37] Variational Bayesian Inference for a Nonlinear Forward Model
    Chappell, Michael A.
    Groves, Adrian R.
    Whitcher, Brandon
    Woolrich, Mark W.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 223 - 236
  • [38] Consistency of Bayesian inference of resolved phylogenetic trees
    Steel, Mike
    JOURNAL OF THEORETICAL BIOLOGY, 2013, 336 : 246 - 249
  • [39] Fidelity of hyperbolic space for Bayesian phylogenetic inference
    Macaulay, Matthew O.
    Darling, Aaron
    Fourment, Mathieu O.
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (04)
  • [40] Empirical evaluation of a prior for Bayesian phylogenetic inference
    Yang, Ziheng
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1512) : 4031 - 4039