Slim-YOLOv8: A fast and accurate algorithm for surface defect detection of steel strips

被引:3
|
作者
Zhao, Jia [1 ,2 ]
Liu, Song [1 ,2 ]
Tao, Han [1 ,2 ]
Liu, Wanming [1 ,2 ]
机构
[1] Hebei Normal Univ, Shijiazhuang, Hebei, Peoples R China
[2] Hebei Prov Key Lab Informat Fus & Intelligent Cont, Shijiazhuang, Hebei, Peoples R China
关键词
Steel strip; defect detection; deep learning; slim-YOLOv8; lightweight; CLASSIFICATION;
D O I
10.1177/03019233241266717
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Steel strip is an extremely important industrial material and is widely used in various industrial fields. During the production process, surface defects need to be detected quickly and accurately. This study proposes a model. This study proposes a new slim-YOLOv8 (lightweight YOLOv8) detection model. The model is based on YOLOv8 and adopts a lightweight design paradigm, which reduces the number of parameters of the model and enhances the detection real-time performance. At the same time, an online reparameterization method is introduced to enhance the feature extraction capability of the network without raising the inference cost, and to improve the model's detection accuracy for complex defects. Finally, an auxiliary training head that can provide richer gradient information is added to the model to help train the model while preventing model overfitting. The performance of slim-YOLOv8 in mean average precision and parameters was evaluated on the well-known steel strip surface defect detection dataset NEU-DET, reaching a mAP of 85.8% at IoU 0.50 and 50.3% in the IoU 0.50-0.95 range. This is an improvement of 8.3% and 3%, respectively, compared to the baseline model. Meanwhile, the number of parameters of the model was reduced from 3.0 M to 2.7 M, which is 7% lower than the baseline model. The experimental results show that slim-YOLOv8 uses a smaller number of parameters, but has higher accuracy and is able to detect various defects in the dataset well.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Improved YOLOv8 Algorithm for Industrial Surface Defect Detection
    Su, Jia
    Jia, Ze
    Qin, Yichang
    Zhang, Jianyan
    Computer Engineering and Applications, 2024, 60 (14) : 187 - 196
  • [22] Improved Lightweight and Efficient FMG-YOLOv8s Algorithm for Steel Surface Defect Detection
    Liang, Liming
    Long, Pengwei
    Li, Yulin
    Computer Engineering and Applications, 61 (03): : 84 - 94
  • [23] CFE-YOLOv8s: Improved YOLOv8s for Steel Surface Defect Detection
    Yang, Shuxin
    Xie, Yang
    Wu, Jianqing
    Huang, Weidong
    Yan, Hongsheng
    Wang, Jingyong
    Wang, Bi
    Yu, Xiangchun
    Wu, Qiang
    Xie, Fei
    ELECTRONICS, 2024, 13 (14)
  • [24] An Improved YOLOv8 Model for Strip Steel Surface Defect Detection
    Wang, Jinwen
    Chen, Ting
    Xu, Xinke
    Zhao, Longbiao
    Yuan, Dijian
    Du, Yu
    Guo, Xiaowei
    Chen, Ning
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [25] Improved Yolov7-tiny Algorithm for Steel Surface Defect Detection
    Qi, Xiangming
    Dong, Xu
    Computer Engineering and Applications, 2023, 59 (12) : 176 - 183
  • [26] Steel Surface Defect Detection Technology Based on YOLOv8-MGVS
    Zeng, Kai
    Xia, Zibo
    Qian, Junlei
    Du, Xueqiang
    Xiao, Pengcheng
    Zhu, Liguang
    METALS, 2025, 15 (02)
  • [27] Research on Steel Surface Defect Detection with Improved YOLOv7 Algorithm
    Gao, Chunyan
    Qin, Shen
    Li, Manhong
    Lyv, Xiaoling
    Computer Engineering and Applications, 2024, 60 (07) : 282 - 291
  • [28] A Steel Surface Defect Detection Algorithm Based on Improved YOLOv7
    Mao, Yihai
    Zhang, Hongyi
    Gao, Xingen
    Luan, Shen
    Lin, Yuxing
    Qi, Xuanhao
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1096 - 1101
  • [29] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870
  • [30] Improved YOLOv7-based steel surface defect detection algorithm
    Xie, Yinghong
    Yin, Biao
    Han, Xiaowei
    Hao, Yan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 346 - 368