Development of a Sodium Alginate/Chitosan Nanocomposite Scaffold Incorporating Zircon Nanoparticles-Hydroxyapatite, and Alendronic Acid for Bone Tissue Engineering

被引:0
|
作者
Asefnejad, Azadeh [1 ]
机构
[1] Islamic Azad Univ, Dept Biomed Engn, Sci & Res Branch, Tehran, Iran
关键词
Bone damage; Artificial bone graft substitutes; Freeze-drying method; Porous scaffolds; Zirconium nanoparticles; Bone tissue engineering; FREEZE-DRYING TECHNIQUE; MECHANICAL-PROPERTIES; FABRICATION; BIOACTIVITY; COMPOSITE; CHITOSAN;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bone damage due to internal or external factors is one of the most common diseases of today's societies in the field of orthopedics, one of the common treatments to solve it is the use of artificial bone graft substitutes made by the usual methods of freeze drying. The method of making three-dimensional porous scaffolds, which has the potential to be used as an alternative to bone grafting using the freeze-drying method, is strongly felt by researchers. The use of new nanoparticles such as zirconium in the polymer network creates a porous scaffold. In this research, scaffolds were first prepared by freeze-drying with a structure and topology close to the bone, then the scaffold was placed in polymers with a weight percentage of 1% of different materials and placed in a freezedrying machine. The use of zirconium nanoparticles has been incorporated as an auxiliary element for the construction of bionanocomposite porous bone scaffolds. Scanning electron microscope (SEM) was used to examine the structure, X-Ray Diffraction (XRD) was used to examine the phasology, and mechanical and biological tests were used to describe the fabricated scaffolds. As a result of the construction of these scaffolds, it was found that these scaffolds show controlled and interconnected porous structures that the size of the pores and porosity of the scaffolds can be effectively adjusted by choosing appropriate amounts of polymer and nanoparticles. The results obtained from the measurement of mechanical properties showed that the scaffolds can basically maintain their strength in their dry state and are close to cancellous and even cortical bones in terms of mechanical properties. The swelling behavior of the scaffolds was also investigated in the body- simulating solution. The cytotoxicity of the scaffold was investigated by direct measurement for three days, and the result of the sample containing zirconium and drug (HA/SA/Cs/CaP/A/Zr) was significantly better than other samples. In the end, this research shows that bionanocomposite scaffolds are a suitable and desirable option for bone tissue engineering.
引用
收藏
页码:1327 / 1344
页数:18
相关论文
共 50 条
  • [21] Porous nanoplate-like hydroxyapatite-sodium alginate nanocomposite scaffolds for potential bone tissue engineering
    Luo, Honglin
    Zuo, Guifu
    Xiong, Guangyao
    Li, Chunzhi
    Wu, Chaoqun
    Wan, Yizao
    MATERIALS TECHNOLOGY, 2017, 32 (02) : 78 - 84
  • [22] Sodium alginate/magnesium oxide nanocomposite scaffolds for bone tissue engineering
    Nasri-Nasrabadi, Bijan
    Kaynak, Akif
    Heidarian, Pejman
    Komeily-Nia, Zahra
    Mehrasa, Mohammad
    Salehi, Hossein
    Kouzani, Abbas Z.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2018, 29 (09) : 2553 - 2559
  • [23] Synthesis, characterization and in-vitro behavior of natural chitosan-hydroxyapatite-diopside nanocomposite scaffold for bone tissue engineering
    Shemshad, Sepideh
    Kamali, Samaneh
    Khavandi, Alireza
    Azari, Shahram
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (09) : 516 - 526
  • [24] Chitosan-hydroxyapatite-MWCNTs nanocomposite patch for bone tissue engineering applications
    Sanchez, Alejandro Gomez
    Prokhorov, Evgen
    Luna-Barcenas, Gabriel
    Doval, R. Roman
    Mendoza, S.
    Rojas-Chavez, H.
    Vargas, Julia Hernandez
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [25] Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering
    Katti, Kalpana S.
    Katti, Dinesh R.
    Dash, Rajalaxmi
    BIOMEDICAL MATERIALS, 2008, 3 (03)
  • [26] Thiolated sodium alginate/polyethylene glycol/hydroxyapatite nanohybrid for bone tissue engineering
    Bhagyasree, K.
    Mukherjee, Dhrubojyoti
    Azamthulla, Mohammad
    Debnath, Shouvik
    Sundar, Lakshmi M.
    Hulikal, Sahana
    Teja, Banala Venkatesh
    Bhatt, Shvetank
    Kamnoore, Devanand
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 76
  • [27] Sodium alginate/Hydroxyapatite/nanocellulose composites: Synthesis and Potentials for bone tissue engineering
    Iswarya, S.
    Theivasanthi, T.
    Gopinath, Subash C. B.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2023, 148
  • [28] Development of a hydroxyapatite bone tissue engineering scaffold with a trimodal pore structure
    Buckley, C. T.
    O'Kelly, K. U.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 931 - 934
  • [29] Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering
    Sajesh, K. M.
    Jayakumar, R.
    Nair, Shantikumar V.
    Chennazhi, K. P.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 62 : 465 - 471
  • [30] Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering
    Yu, Chia-Cherng
    Chang, Jung-Jhih
    Lee, Yen-Hsien
    Lin, Yu-Cheng
    Wu, Meng-Hsiu
    Yang, Ming-Chien
    Chien, Chiang-Ting
    MATERIALS LETTERS, 2013, 93 : 133 - 136