Breast cancer classification through multivariate radiomic time series analysis in DCE-MRI sequences

被引:6
|
作者
Prinzi, Francesco [1 ,2 ]
Orlando, Alessia [3 ]
Gaglio, Salvatore [4 ,5 ]
Vitabile, Salvatore [1 ]
机构
[1] Univ Palermo, Dept Biomed Neurosci & Adv Diagnost BiND, Palermo, Italy
[2] Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB2 1TN, England
[3] Univ Hosp Paolo Giaccone, Dept Biomed Neurosci & Adv Diagnost BiND, Sect Radiol, Palermo, Italy
[4] Univ Palermo, Dept Engn, Palermo, Italy
[5] Natl Res Council ICAR CNR, Inst High Performance Comp & Networking, Palermo, Italy
关键词
Radiomics; Machine learning; Time-series analysis; Explainable AI; CONTRAST-ENHANCED MRI; MAMMOGRAPHY; ULTRASOUND; PREDICTION; PROGNOSIS; FEATURES; IMAGES;
D O I
10.1016/j.eswa.2024.123557
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer is the most prevalent disease that poses a significant threat to women's health. Despite the Dynamic Contrast-Enhanced MRI (DCE-MRI) has been widely used for breast cancer classification, its diagnostic performance is still suboptimal. In this work, the Radiomic workflow was implemented to classify the whole DCE-MRI sequence based on the distinction in contrast agent uptake between benign and malignant lesions. The radiomic features extracted from each of the seven time instants within the DCE-MRI sequence were fed into a multi-instant features selection strategy to select the discriminative features for time series classification. Several time series classification algorithms including Rocket, MultiRocket, K-Nearest Neighbor, Time Series Forest, and Supervised Time Series Forest were compared. Firstly, a univariate classification was performed to find the five most informative radiomic series, and then, a multivariate time series classification was implemented via a voting mechanism. The Multivariate Rocket model was the most accurate (Accuracy = 0.852, AUC-ROC = 0.852, Specificity = 0.823, Sensitivity = 0.882). The intelligible radiomic features enabled model findings explanations and clinical validation. In particular, the Energy and TotalEnergy were among the most important features, and the most descriptive for the change in signal intensity, which is the main effect of the contrast agent.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] DCE-MRI interpolation using learned transformations for breast lesions classification
    Wang, Hongyu
    Gao, Cong
    Feng, Jun
    Pan, Xiaoying
    Yang, Di
    Chen, Baoying
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (17) : 26237 - 26254
  • [32] Harmonization of Radiomic Features of Breast Lesions Extracted From DCE-MRI Across Two Populations
    Whitney, H.
    Li, H.
    Ji, Y.
    Edwards, A.
    Papaioannou, J.
    Liu, P.
    Giger, M.
    MEDICAL PHYSICS, 2019, 46 (06) : E405 - E405
  • [33] BreastDM: A DCE-MRI dataset for breast tumor image segmentation and classification
    Zhao, Xiaoming
    Liao, Yuehui
    Xie, Jiahao
    He, Xiaxia
    Zhang, Shiqing
    Wang, Guoyu
    Fang, Jiangxiong
    Lu, Hongsheng
    Yu, Jun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [34] LBP-TOP for Volume Lesion Classification in Breast DCE-MRI
    Piantadosi, Gabriele
    Fusco, Roberta
    Petrillo, Antonella
    Sansone, Mario
    Sansone, Carlo
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 647 - 657
  • [35] A comprehensive hierarchical classification based on multi-features of breast DCE-MRI for cancer diagnosis
    Liu, Hui
    Wang, Jinke
    Gao, Jiyue
    Liu, Shanshan
    Liu, Xiang
    Zhao, Zuowei
    Guo, Dongmei
    Dan, Guo
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (10) : 2413 - 2425
  • [36] SEGMENTATION AND CLASSIFICATION OF TRIPLE NEGATIVE BREAST CANCERS USING DCE-MRI
    Agner, Shannon C.
    Xu, Jun
    Fatakdawala, Hussain
    Ganesan, Shridar
    Madabhushi, Anant
    Englander, Sarah
    Rosen, Mark
    Thomas, Kathleen
    Schnall, Mitehell
    Feldman, Miehael
    Tomaszewski, John
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1227 - +
  • [37] A comprehensive hierarchical classification based on multi-features of breast DCE-MRI for cancer diagnosis
    Hui Liu
    Jinke Wang
    Jiyue Gao
    Shanshan Liu
    Xiang Liu
    Zuowei Zhao
    Dongmei Guo
    Guo Dan
    Medical & Biological Engineering & Computing, 2020, 58 : 2413 - 2425
  • [38] Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification
    Fusco, Roberta
    Sansone, Mario
    Filice, Salvatore
    Granata, Vincenza
    Catalano, Orlando
    Amato, Daniela Maria
    Di Bonito, Maurizio
    D'Aiuto, Massimiliano
    Capasso, Immacolata
    Rinaldo, Massimo
    Petrillo, Antonella
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [39] A Gradient-Based Approach for Breast DCE-MRI Analysis
    Losurdo, L.
    Basile, T. M. A.
    Fanizzi, A.
    Bellotti, R.
    Bottigli, U.
    Carbonara, R.
    Dentamaro, R.
    Diacono, D.
    Didonna, V
    Lombardi, A.
    Giotta, F.
    Guaragnella, C.
    Mangia, A.
    Massafra, R.
    Tamborra, P.
    Tangaro, S.
    La Forgia, D.
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [40] Correlative Analysis of FFDM and DCE-MRI for Improved Breast CADx
    Yuan, Yading
    Giger, Maryellen L.
    Li, Hui
    Bhooshan, Neha
    Sennett, Charlene A.
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2012, 32 (01) : 42 - 50