A comparative experimental research on the diagnosis of tooth root cracks in asymmetric spur gear pairs with a one-dimensional convolutional neural network

被引:3
|
作者
Kalay, Onur Can [1 ,2 ]
Karpat, Fatih [1 ]
机构
[1] Bursa Uludag Univ, Dept Mech Engn, TR-16059 Bursa, Turkiye
[2] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
关键词
Gearbox; Fault diagnosis; Convolutional neural network; Asymmetric teeth; Tooth root crack; Vibration signal; FAULT-DIAGNOSIS; CLASSIFICATION;
D O I
10.1016/j.mechmachtheory.2024.105755
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Gearboxes transfer rotational motion and handle precision functionalities in many fields, including aviation, wind turbines, and industrial services. Their health management is essential to minimize workforce risks, increase the level of safety, and avoid machine breakdowns. From this standpoint, the present experimental research work developed a convolutional neural networkbased method for diagnosing different levels of tooth root cracks (25 %-50 %-75 %-100 %) for symmetric (20 degrees/20 degrees) and asymmetric (20 degrees/30 degrees) profiled gear pairs. A series of vibration experiments were performed on a one-stage spur gearbox to achieve this by using a tri-axial accelerometer under variable working loads. The main purpose of this experimental research study is to explore the influence of the tooth profile on spur gears' vibration responses and whether utilizing an asymmetric tooth profile would positively impact a deep learning algorithm's classification accuracy to add to the enhancements it provides in terms of fatigue life, mesh stiffness, and impact strength. Experimental results revealed that the overall classification accuracy could be increased by 7.712 % by feeding the proposed deep learning model with vibration data measured using test samples with asymmetric teeth.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A Haze Prediction Method Based on One-Dimensional Convolutional Neural Network
    Zhang, Ziyan
    Tian, Jiawei
    Huang, Weizheng
    Yin, Lirong
    Zheng, Wenfeng
    Liu, Shan
    ATMOSPHERE, 2021, 12 (10)
  • [32] Soft reordering one-dimensional convolutional neural network for credit scoring
    Qian, Hongyi
    Ma, Ping
    Gao, Songfeng
    Song, You
    KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [33] Inverse Modeling of Filter Using One-Dimensional Convolutional Neural Network
    Li, Jin-Qi
    Shp, Wei
    Liu, Zhi-Xian
    Peng, Lin
    2024 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY, ICMMT, 2024,
  • [34] Structural Damage Detection Based on One-Dimensional Convolutional Neural Network
    Xue, Zhigang
    Xu, Chenxu
    Wen, Dongdong
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [35] One-dimensional convolutional neural network for Jacobian in Diffuse Optical Tomography
    Yi, Huangjian
    Yang, Ruigang
    He, Xuelei
    Guo, Hongbo
    Wang, Beilei
    Hou, Yuqing
    He, Xiaowei
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [36] Traffic light recognition based on one-dimensional convolutional neural network
    Oh, Changsuk
    Sim, Dongseok
    Kim, H. Jin
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [37] Classification of Voice Disorders Using a One-Dimensional Convolutional Neural Network
    Fujimura, Shintaro
    Kojima, Tsuyoshi
    Okanoue, Yusuke
    Shoji, Kazuhiko
    Inoue, Masato
    Omori, Koichi
    Hori, Ryusuke
    JOURNAL OF VOICE, 2022, 36 (01) : 15 - 20
  • [38] Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings
    Xie, Shenglong
    Ren, Guoying
    Zhu, Junjiang
    SCIENCE PROGRESS, 2020, 103 (03)
  • [39] Fault Diagnosis of Wire Disconnection in Heater Control System Using One-Dimensional Convolutional Neural Network
    Guo, Jiawei
    Sun, Linfeng
    Kawaguchi, Takahiro
    Hashimoto, Seiji
    PROCESSES, 2025, 13 (02)
  • [40] Adaptive evolutionary neural architecture search based on one-dimensional convolutional neural network for electric rudder fault diagnosis
    Shi, Xinjie
    Guo, Chenxia
    Yang, Ruifeng
    Song, Yizhe
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)