Comparing Data Structures Used in Divide-and-Conquer Three-Dimensional Voronoi Diagrams

被引:0
|
作者
Dietsche, Dan [1 ]
Dettling, T. Elise [1 ]
Trefftz, Christian [1 ]
DeVries, Byron [1 ]
机构
[1] Grand Valley State Univ, Sch Comp, Allendale, MI 49401 USA
关键词
Voronoi Diagrams; Divide-and-Conquer; Algorithms;
D O I
10.1109/eIT60633.2024.10609892
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Voronoi diagrams are used in a wide range of applications, and many of those applications are in three dimensional space. Two important benchmarks you can measure for Voronoi solver algorithms are run time and memory usage. Run time is important due to the potential costs of computation, and memory usage allows for larger areas to be analyzed. Run time can be addressed via parallelization, but memory usage is dependent on data structure. In this paper we compare the run time and memory usage of a previously published 3D Voronoi solver implementation that utilized an array data structure with a new novel implementation that utilizes an oct-tree data structure.
引用
收藏
页码:354 / 358
页数:5
相关论文
共 50 条
  • [21] Using divide-and-conquer GA strategy in fuzzy data mining
    Hong, TP
    Chen, CH
    Wu, YL
    Lee, YC
    ISCC2004: NINTH INTERNATIONAL SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 116 - 121
  • [22] A divide-and-conquer method for compression and reconstruction of smart meter data
    Liu, Bo
    Hou, Yufan
    Luan, Wenpeng
    Liu, Zishuai
    Chen, Sheng
    Yu, Yixin
    APPLIED ENERGY, 2023, 336
  • [23] A divide-and-conquer approach to privacy-preserving high-dimensional big data release
    Wang, Rong
    Liang, Junchuan
    Wang, Siyu
    Chang, Chin-Chen
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2024, 83
  • [24] Robust Construction of Voronoi Diagrams of Spherical Balls in Three-Dimensional Space
    Lee, Mokwon
    Sugihara, Kokichi
    Kim, Deok-Soo
    COMPUTER-AIDED DESIGN, 2022, 152
  • [25] Optimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Data
    Xu, Ganggang
    Shang, Zuofeng
    Cheng, Guang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [26] Retention Time Alignment of LC/MS Data by a Divide-and-Conquer Algorithm
    Zhang, Zhongqi
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2012, 23 (04) : 764 - 772
  • [27] EdgeCrack: A parallel Divide-and-Conquer algorithm for building a topological data structure
    Meijers, Martijn
    Ledoux, Hugo
    URBAN AND REGIONAL DATA MANAGEMENT, 2013, : 107 - 116
  • [28] Symbolic Abstractions with Guarantees: A Data-Driven Divide-and-Conquer Strategy
    Lavaei, Abolfazl
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7994 - 7999
  • [29] NORMALIZED DIVIDE-AND-CONQUER - A SCALING TECHNIQUE FOR SOLVING MULTI-DIMENSIONAL PROBLEMS
    KARLSSON, RG
    OVERMARS, MH
    INFORMATION PROCESSING LETTERS, 1988, 26 (06) : 307 - 312
  • [30] Divide-and-conquer recurrences associated with generalized heaps, optimal merge, and related structures
    Chen, WM
    Chen, GH
    THEORETICAL COMPUTER SCIENCE, 2003, 292 (03) : 667 - 677