Data-driven finite element mesh generation expert system based on BP neural network

被引:0
|
作者
Niu, Yufeng [1 ]
Wang, Shuhong [1 ]
Duan, Nana [1 ]
Zhang, Naming [1 ]
Wang, Yilun [1 ]
He, Zhenggang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian, Peoples R China
关键词
backpropagation neural network; mesh generation; posterior error; mesh size field;
D O I
10.1109/CEFC61729.2024.10585893
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper establishes a fully connected neural network to determine the finite element mesh density. Given an initial mesh in the domain to be solved, the mesh density is obtained according to the calculation error of the solution problem. This method can generate high-quality meshes, but does not require much expert knowledge.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Hierarchical tree-based finite element mesh generation
    Greaves, DM
    Borthwick, AGL
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (04) : 447 - 471
  • [42] Expert System for Drying Schemes of Agricultural Products Based on Fuzzy Control and BP Neural Network
    Huang, Jing
    Xiong, Wei
    Xu, Honglei
    Zhang, Jingyu
    Yu, Xiaofeng
    JOURNAL OF INTERNET TECHNOLOGY, 2021, 22 (06): : 1253 - 1263
  • [43] Data-Driven Modeling for UGI Gasification Processes via an Enhanced Genetic BP Neural Network With Link Switches
    Liu, Shida
    Hou, Zhongsheng
    Yin, Chenkun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (12) : 2718 - 2729
  • [44] Data-driven finite element simulation for yarn breaking strength analysis
    Tao J.
    Wang J.
    Zhang J.
    Fangzhi Xuebao/Journal of Textile Research, 2024, 45 (02): : 238 - 245
  • [45] A data-driven short video international communication model based on indicator system communication network and attention BiLSTM neural network
    Song, Jinbao
    Liu, Jing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [46] Data-driven multiscale finite element method: From concurrence to separation
    Xu, Rui
    Yang, Jie
    Yan, Wei
    Huang, Qun
    Giunta, Gaetano
    Belouettar, Salim
    Zahrouni, Hamid
    Ben Zineb, Tarak
    Hu, Heng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363
  • [47] Dynamic data-driven finite element models for laser treatment of cancer
    Oden, J. T.
    Diller, K. R.
    Bajaj, C.
    Browne, J. C.
    Hazle, J.
    Babuska, I.
    Bass, J.
    Biduat, L.
    Demkowicz, L.
    Elliott, A.
    Feng, Y.
    Fuentes, D.
    Prudhomme, S.
    Rylander, M. N.
    Stafford, R. J.
    Zhang, Y.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (04) : 904 - 922
  • [48] A multi-level method for data-driven finite element computations
    Korzeniowski, Tim Fabian
    Weinberg, Kerstin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 379 (379)
  • [49] Improved axial dynamic analysis of risers based on finite element method and data-driven models
    Liu, Xiuquan
    Li, Yanwei
    Zhang, Nan
    Sun, Hexiang
    Chang, Yuanjiang
    Chen, Guoming
    Xu, Liangbin
    Sheng, Leixiang
    OCEAN ENGINEERING, 2020, 214
  • [50] A neural network based finite element grid generation algorithm for the simulation of light propagation
    Bohn, CA
    APPLIED NUMERICAL MATHEMATICS, 2003, 46 (3-4) : 263 - 277