Toward a Digital Twin of a Solid Oxide Fuel Cell Microcogenerator: Data-Driven Modelling

被引:0
|
作者
Testasecca, Tancredi [1 ]
Maniscalco, Manfredi Picciotto [2 ]
Brunaccini, Giovanni [2 ]
Airo Farulla, Girolama [3 ]
Ciulla, Giuseppina [1 ]
Beccali, Marco [1 ]
Ferraro, Marco [2 ]
机构
[1] Univ Palermo, Dept Engn, I-90128 Palermo, Italy
[2] Ist Tecnol Avanzate Energia Nicola Giordano, CNR ITAE, I-98126 Palermo, Italy
[3] Consiglio Nazl Ric Ist Ingn Mare, CNR INM, I-90146 Palermo, Italy
关键词
digital twin; energy; solid oxide fuel cell; machine learning; hydrogen; NEURAL-NETWORK; PARAMETER-IDENTIFICATION; FAULT-DIAGNOSIS; OPTIMIZATION;
D O I
10.3390/en17164140
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solid oxide fuel cells (SOFC) could facilitate the green energy transition as they can produce high-temperature heat and electricity while emitting only water when supplied with hydrogen. Additionally, when operated with natural gas, these systems demonstrate higher thermoelectric efficiency compared to traditional microturbines or alternative engines. Within this context, although digitalisation has facilitated the acquisition of extensive data for precise modelling and optimal management of fuel cells, there remains a significant gap in developing digital twins that effectively achieve these objectives in real-world applications. Existing research predominantly focuses on the use of machine learning algorithms to predict the degradation of fuel cell components and to optimally design and theoretically operate these systems. In light of this, the presented study focuses on developing digital twin-oriented models that predict the efficiency of a commercial gas-fed solid oxide fuel cell under various operational conditions. This study uses data gathered from an experimental setup, which was employed to train various machine learning models, including artificial neural networks, random forests, and gradient boosting regressors. Preliminary findings demonstrate that the random forest model excels, achieving an R2 score exceeding 0.98 and a mean squared error of 0.14 in estimating electric efficiency. These outcomes could validate the potential of machine learning algorithms to support fuel cell integration into energy management systems capable of improving efficiency, pushing the transition towards sustainable energy solutions.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Data-driven techniques for fault diagnosis in power generation plants based on solid oxide fuel cells
    Costamagna, Paola
    De Giorgi, Andrea
    Moser, Gabriele
    Serpico, Sebastiano B.
    Trucco, Andrea
    ENERGY CONVERSION AND MANAGEMENT, 2019, 180 : 281 - 291
  • [42] Performance degradation analysis and fault prognostics of solid oxide fuel cells using the data-driven method
    Zhang, Xiaochen
    He, Zhenyu
    Zhan, Zhongliang
    Han, Te
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (35) : 18511 - 18523
  • [43] Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model
    Wang, Bowen
    Zhang, Guobin
    Wang, Huizhi
    Xuan, Jin
    Jiao, Kui
    ENERGY AND AI, 2020, 1
  • [44] Source Diagnosis of Solid Oxide Fuel Cell System Oscillation Based on Data Driven
    Fu, Xiaowei
    Liu, Yanlin
    Li, Xi
    ENERGIES, 2020, 13 (16)
  • [45] A data-driven approach toward a machine- and system-level performance monitoring digital twin for production lines
    Xu, Yaqing
    Qamsane, Yassine
    Puchala, Saumuy
    Januszczak, Annette
    Tilbury, Dawn M.
    Barton, Kira
    COMPUTERS IN INDUSTRY, 2024, 157-158
  • [46] Data-driven digital twin method for leak detection in natural gas pipelines
    Liang, Jing
    Ma, Li
    Liang, Shan
    Zhang, Hao
    Zuo, Zhonglin
    Dai, Juan
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [47] An advanced resin reaction modeling using data-driven and digital twin techniques
    Chady Ghnatios
    Pierre Gérard
    Anais Barasinski
    International Journal of Material Forming, 2023, 16
  • [48] Data-driven Digital Twin approach for process optimization: an industry use case
    Stojanovic, Nenad
    Milenovic, Dejan
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4202 - 4211
  • [49] A Big Data-driven Digital Twin Model Method for Building a Shop Floor
    Yan, Jihong
    Ji, Siyang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 63 - 77
  • [50] Operation Optimization Framework for Advanced Reactors Using a Data-Driven Digital Twin
    Rivas, Andy
    Delipei, Gregory K.
    Hou, Jason
    JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE, 2025, 11 (02):