Experimental demonstration of deep-learning-enabled adaptive optics

被引:1
|
作者
Fu, Hao-Bin [1 ,2 ,3 ,4 ,5 ]
Wan, Zu-Yang [6 ]
Li, Yu-huai [1 ,2 ,3 ,4 ,5 ]
Li, Bo [1 ,2 ,3 ,4 ,5 ]
Rong, Zhen [1 ,2 ,3 ,4 ,5 ]
Wang, Gao-Qiang [1 ,2 ,3 ,4 ,5 ]
Yin, Juan [1 ,2 ,3 ,4 ,5 ]
Ren, Ji-Gang [1 ,2 ,3 ,4 ,5 ]
Liu, Wei-Yue [5 ,6 ]
Liao, Sheng-Kai [1 ,2 ,3 ,4 ,5 ]
Cao, Yuan [1 ,2 ,3 ,4 ,5 ]
Peng, Cheng-Zhi [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
[6] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 03期
基金
国家重点研发计划;
关键词
QUANTUM KEY DISTRIBUTION; WAVE-FRONT SENSOR; FREE-SPACE; ATMOSPHERIC-TURBULENCE; HARTMANN SENSORS; NEURAL-NETWORKS; SPGD ALGORITHM; COMPENSATION; PERFORMANCE; DAYLIGHT;
D O I
10.1103/PhysRevApplied.22.034047
中图分类号
O59 [应用物理学];
学科分类号
摘要
Satellite-based quantum communication is a promising approach for establishing global-scale quantum networks. In free-space quantum channels, single-mode-fiber coupling plays a crucial role in increasing the signal-to-noise ratio of daylight quantum key distribution (QKD) and ensuring compatibility with standard fiber-based QKD protocols. However, consistently achieving high efficiency and stable single- mode-fiber coupling under strong atmospheric turbulence remains an ongoing experimental challenge. In this study, we experimentally demonstrate an adaptive method based on convolutional neural networks capable of directly estimating phase information from a single defocused image. We developed a convolutional neural network to establish the relationship between intensity distribution and phase information of turbulent distortions. We demonstrate the real-time performance of our deep-learning adaptive method in increasing single-mode-fiber coupling efficiency across various turbulence scales and quantify turbulence frequencies. Notably, the method proved highly effective in strong-turbulence scenarios, with frequencies reaching up to 200 Hz, leading to a significant increase in single-mode-fiber coupling efficiency. We demonstrate the corrective capability of our adaptive method for strong turbulence, enabled by the generalization of the convolutional neural network. Our results offer an efficient solution for daytime free-space QKD applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Deep-learning-enabled electromagnetic near-field prediction and inverse design of metasurfaces
    Kanmaz, Tevfik bulent
    Ozturk, Efe
    Demir, Hilmi volkan
    Gunduz-demir, Cigdem
    OPTICA, 2023, 10 (10): : 1373 - 1382
  • [22] Deep-Learning-Enabled Predictive Maintenance in Industrial Internet of Things: Methods, Applications, and Challenges
    Wang, Hongchao
    Zhang, Weiting
    Yang, Dong
    Xiang, Yuhong
    IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 2602 - 2615
  • [23] Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI
    Hou, Xirui
    Guo, Pengfei
    Wang, Puyang
    Liu, Peiying
    Lin, Doris D. M.
    Fan, Hongli
    Li, Yang
    Wei, Zhiliang
    Lin, Zixuan
    Jiang, Dengrong
    Jin, Jin
    Kelly, Catherine
    Pillai, Jay J.
    Huang, Judy
    Pinho, Marco C.
    Thomas, Binu P.
    Welch, Babu G.
    Park, Denise C.
    Patel, Vishal M.
    Hillis, Argye E.
    Lu, Hanzhang
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [24] High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy
    Horgan, Conor C.
    Jensen, Magnus
    Nagelkerke, Anika
    St-Pierre, Jean-Philippe
    Vercauteren, Tom
    Stevens, Molly M.
    Bergholt, Mads S.
    ANALYTICAL CHEMISTRY, 2021, 93 (48) : 15850 - 15860
  • [25] Offloading Optimization in Edge Computing for Deep-Learning-Enabled Target Tracking by Internet of UAVs
    Yang, Bo
    Cao, Xuelin
    Yuen, Chau
    Qian, Lijun
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) : 9878 - 9893
  • [26] Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion
    Lewis, William E.
    Knapp, Patrick F.
    Slutz, Stephen A.
    Schmit, Paul F.
    Chandler, Gordon A.
    Gomez, Matthew R.
    Harvey-Thompson, Adam J.
    Mangan, Michael A.
    Ampleford, David J.
    Beckwith, Kristian
    PHYSICS OF PLASMAS, 2021, 28 (09)
  • [27] Deep-Learning-Enabled Fast Optical Identification and Characterization of 2D Materials
    Han, Bingnan
    Lin, Yuxuan
    Yang, Yafang
    Mao, Nannan
    Li, Wenyue
    Wang, Haozhe
    Yasuda, Kenji
    Wang, Xirui
    Fatemi, Valla
    Zhou, Lin
    Wang, Joel I-Jan
    Ma, Qiong
    Cao, Yuan
    Rodan-Legrain, Daniel
    Bie, Ya-Qing
    Navarro-Moratalla, Efren
    Klein, Dahlia
    MacNeill, David
    Wu, Sanfeng
    Kitadai, Hikari
    Ling, Xi
    Jarillo-Herrero, Pablo
    Kong, Jing
    Yin, Jihao
    Palacios, Tomas
    ADVANCED MATERIALS, 2020, 32 (29)
  • [28] A Robust Deep-Learning-Enabled Trust-Boundary Protection for Adversarial Industrial IoT Environment
    Hassan, Mohammad Mehedi
    Hassan, Md Rafiul
    Huda, Shamsul
    de Albuquerque, Victor Hugo C.
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12): : 9611 - 9621
  • [29] Deep-learning-enabled breathable thermogalvanic hydrogel array for self-powered mental monitoring
    Li, Yu
    Li, Ning
    Zhang, Xinru
    Zhang, Jie
    Sun, Lei
    Huang, Zhiquan
    Zhang, Hulin
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (15) : 10531 - 10539
  • [30] Deep-Learning-Enabled Fast Raman Identification of the Twist Angle of Bi-Layer Graphene
    Chen, Yangbo
    Li, Cheng
    Liu, Shan
    Gao, Shikun
    Huang, Chenyi
    Yu, Xin
    Xu, Xiangrui
    Ke, Haibo
    Xue, Dezhen
    Yu, Gui
    Liu, Zhe
    Dai, Mengyan
    Zhang, Xueao
    SMALL, 2025, 21 (10)