Experimental demonstration of deep-learning-enabled adaptive optics

被引:1
|
作者
Fu, Hao-Bin [1 ,2 ,3 ,4 ,5 ]
Wan, Zu-Yang [6 ]
Li, Yu-huai [1 ,2 ,3 ,4 ,5 ]
Li, Bo [1 ,2 ,3 ,4 ,5 ]
Rong, Zhen [1 ,2 ,3 ,4 ,5 ]
Wang, Gao-Qiang [1 ,2 ,3 ,4 ,5 ]
Yin, Juan [1 ,2 ,3 ,4 ,5 ]
Ren, Ji-Gang [1 ,2 ,3 ,4 ,5 ]
Liu, Wei-Yue [5 ,6 ]
Liao, Sheng-Kai [1 ,2 ,3 ,4 ,5 ]
Cao, Yuan [1 ,2 ,3 ,4 ,5 ]
Peng, Cheng-Zhi [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
[6] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 03期
基金
国家重点研发计划;
关键词
QUANTUM KEY DISTRIBUTION; WAVE-FRONT SENSOR; FREE-SPACE; ATMOSPHERIC-TURBULENCE; HARTMANN SENSORS; NEURAL-NETWORKS; SPGD ALGORITHM; COMPENSATION; PERFORMANCE; DAYLIGHT;
D O I
10.1103/PhysRevApplied.22.034047
中图分类号
O59 [应用物理学];
学科分类号
摘要
Satellite-based quantum communication is a promising approach for establishing global-scale quantum networks. In free-space quantum channels, single-mode-fiber coupling plays a crucial role in increasing the signal-to-noise ratio of daylight quantum key distribution (QKD) and ensuring compatibility with standard fiber-based QKD protocols. However, consistently achieving high efficiency and stable single- mode-fiber coupling under strong atmospheric turbulence remains an ongoing experimental challenge. In this study, we experimentally demonstrate an adaptive method based on convolutional neural networks capable of directly estimating phase information from a single defocused image. We developed a convolutional neural network to establish the relationship between intensity distribution and phase information of turbulent distortions. We demonstrate the real-time performance of our deep-learning adaptive method in increasing single-mode-fiber coupling efficiency across various turbulence scales and quantify turbulence frequencies. Notably, the method proved highly effective in strong-turbulence scenarios, with frequencies reaching up to 200 Hz, leading to a significant increase in single-mode-fiber coupling efficiency. We demonstrate the corrective capability of our adaptive method for strong turbulence, enabled by the generalization of the convolutional neural network. Our results offer an efficient solution for daytime free-space QKD applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A deep-learning-enabled diagnosis of ovarian cancer
    Van Calster, Ben
    Timmerman, Stefan
    Geysels, Axel
    Verbakel, Jan Y
    Froyman, Wouter
    The Lancet Digital Health, 2022, 4 (09):
  • [2] A deep-learning-enabled diagnosis of ovarian cancer
    Van Calster, Ben
    Timmerman, Stefan
    Geysels, Axel
    Verbakel, Jan Y.
    Froyman, Wouter
    LANCET DIGITAL HEALTH, 2022, 4 (09): : E630 - E630
  • [3] Deep-learning-enabled Holographic Polarization Microscopy
    Liu, Tairan
    de Haan, Kevin
    Bai, Bijie
    Rivenson, Yair
    Luo, Yi
    Wang, Hongda
    Karalli, David
    Fu, Hongxiang
    Zhang, Yibo
    FitzGerald, John
    Ozcan, Aydogan
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [4] Deep-learning-enabled self-adaptive microwave cloak without human intervention
    Qian, Chao
    Zheng, Bin
    Shen, Yichen
    Jing, Li
    Li, Erping
    Shen, Lian
    Chen, Hongsheng
    NATURE PHOTONICS, 2020, 14 (06) : 383 - +
  • [5] Deep-learning-enabled self-adaptive microwave cloak without human intervention
    Chao Qian
    Bin Zheng
    Yichen Shen
    Li Jing
    Erping Li
    Lian Shen
    Hongsheng Chen
    Nature Photonics, 2020, 14 : 383 - 390
  • [6] Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials
    Wang, Yihui
    Sha, Wei
    Xiao, Mi
    Qiu, Cheng-Wei
    Gao, Liang
    ADVANCED MATERIALS, 2023, 35 (33)
  • [7] A deep-learning-enabled diagnosis of ovarian cancer reply
    Gao, Yue
    Li, Huayi
    Chen, Lingxi
    Wu, Yuan
    Ma, Ding
    Gao, Qinglei
    LANCET DIGITAL HEALTH, 2022, 4 (09): : E631 - E631
  • [8] Deep-Learning-Enabled Security Issues in the Internet of Things
    Lv, Zhihan
    Qiao, Liang
    Li, Jinhua
    Song, Houbing
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) : 9531 - 9538
  • [9] Transformation Optics and Prior-Knowledge-Guided Deep-Learning-Enabled Synthesis for Microwave Metalens Antennas (Keynote)
    Chen, Zhi Ning
    2023 INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY, IWAT, 2023,
  • [10] A deep-learning-enabled diagnosis of ovarian cancer – Authors' reply
    Gao, Yue
    Li, Huayi
    Chen, Lingxi
    Wu, Yuan
    Ma, Ding
    Gao, Qinglei
    The Lancet Digital Health, 2022, 4 (09):