Effective solid waste disposal necessitates suitable combination and clean conversion technologies to maximize resource utilization. Thus, this study investigates the behavior of co-pyrolysis in municipal solid waste (MSW) and food waste (FW) via thermogravimetric analysis, aiming to discern synergistic effects and optimize waste to energy conversion. The impacts of heating rate and blending ratios were evaluated under an inert N2 atmosphere, within a temperature range of 30-900 degrees C, during single and combined pyrolysis processes respectively. Results revealed slight variations in weight loss patterns and thermal decomposition behavior. When heating rate increased from 10 to 30 degrees C.min- 1, decomposition process delayed, resulting in higher initial (Ti), peak (TP), and final (Tf) temperatures due to inadequate heat transfer. As food waste increased, mass loss rose and favorable synergistic effect was observed at 20 % FW during medium temperatures, while other blends showed inhibitory effects. The pyrolytic index (D) rose nonlinearly from 6.29 x 10- 7 to 7.72 x 10-7 with a higher FW proportion, peaking at 20 % FW, suggesting an optimal MSW and FW mixing ratio. This blend also exhibited the lowest activation energy, indicating a more efficient thermal decomposition process. Those outcomes offer crucial insights for optimizing co-pyrolysis systems and provide essential information for co-disposal of MSW and FW, potentially reducing pollutant emissions and enhancing waste to energy conversion.