Energy comparison and cost estimation of pressure-retarded osmosis using spiral wound membrane

被引:0
|
作者
AL-Musawi, Osamah A. H. [1 ]
Mohammad, Abdul Wahab [2 ]
Mahood, Hameed B. [3 ,4 ]
Mahmoudi, Ebrahim [1 ]
Ang, Wei Lun [1 ]
Kadhum, Abdul Amir H. [5 ]
机构
[1] Univ Kebangsaan Malaysia, Dept Chem & Proc Engn, UKM Bangi 43600, Selangor, Malaysia
[2] Univ Sharjah, Coll Engn, Chem & Water Desalinat Engn Program, Sharjah, U Arab Emirates
[3] Univ Birmingham, Ctr Sustainable Cooling, Sch Chem Engn, Birmingham B15 2TT, England
[4] Univ Warith Al Anbiyaa, Coll Engn, Karbala 56001, Iraq
[5] Univ Al Ameed, Karbala, Iraq
关键词
Pressure retarded osmosis; Levelized cost of energy; Economic feasibility; Osmotic power density; REVERSE-OSMOSIS; LEVELIZED COST; DESALINATION; POWER; DESIGN; OPTIMIZATION; GENERATION; PRO;
D O I
10.1016/j.dwt.2024.100732
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Advancements in Pressure Retarded Osmosis (PRO) technology are enhancing the feasibility of evaluating its economic viability against other renewable energy production methods. This is done using the Levelized Cost of Energy (LCOE) as a metric. The study focuses on three PRO scenarios designed to minimize environmental impact and promote sustainable energy. These scenarios utilize a spiral-wound membrane module combined with hyper-saline solutions from Reverse Osmosis (RO) and wastewater from demineralization processes. Experimental results using a commercial spiral-wound membrane in the PRO system yielded LCOE values of USD 0.0702/kWh for a draw solution (DS) concentration of 36.2 g/l, USD 0.0563/kWh for 44.2 g/l, and USD 0.0721/ kWh for 51.8 g/l. The study also evaluated environmental viability by considering the cost of CO2 emissions. This comprehensive comparison highlighted PRO's competitiveness with fossil fuels, showing it to be a reasonable alternative to coal and oil but less practical than natural gas. Specifically, the environmental analysis revealed that PRO is approximately 25.2 % more competitive than coal and 9.76 % more competitive than oil but 27.16 % less competitive compared to natural gas in terms of CO2 emission costs. This underscores the importance of considering carbon emission mitigation in energy generation.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Generating Osmotic Power Using Waste Effluents for Pressure-Retarded Osmosis
    AL-Musawi, Osamah A. H.
    Mohammad, Abdul Wahab
    Mahood, Hameed B.
    Ang, Wei Lun
    Mahmoudi, Ebrahim
    Kadhum, Abdul Amir H.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, : 4295 - 4311
  • [32] Energy recovery modeling of pressure-retarded osmosis systems with membrane modules compatible with high salinity draw streams
    Manzoor, Husnain
    Selam, Muaz A.
    Adham, Samer
    Shon, Ho Kyong
    Castier, Marcelo
    Abdel-Wahab, Ahmed
    DESALINATION, 2020, 493
  • [33] A Feasibility Study of Pressure-Retarded Osmosis Power Generation System Based on Measuring Permeation Volume Using Reverse Osmosis Membrane
    Enomoto, Hiroshi
    Fujitsuka, Masashi
    Hasegawa, Tomoyasu
    Kuwada, Masatoshi
    Tanioka, Akihiko
    Minagawa, Mie
    ELECTRICAL ENGINEERING IN JAPAN, 2010, 173 (02) : 8 - 20
  • [34] Modeling and performance analysis of forward and pressure-retarded osmosis
    Ettouney, Hisham
    Al-Hajri, Khalida
    DESALINATION AND WATER TREATMENT, 2019, 154 : 1 - 13
  • [35] Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO): A Review
    Kim, Jihye
    Jeong, Kwanho
    Park, Myoung Jun
    Shon, Ho Kyong
    Kim, Joon Ha
    ENERGIES, 2015, 8 (10): : 11821 - 11845
  • [36] Evaluation of the Specific Energy Consumption of Sea Water Reverse Osmosis Integrated with Membrane Distillation and Pressure-Retarded Osmosis Processes with Theoretical Models
    Tsai, Shao-Chi
    Huang, Wei-Zhi
    Lin, Geng-Sheng
    Wang, Zhen
    Tung, Kuo-Lun
    Chuang, Ching-Jung
    MEMBRANES, 2022, 12 (04)
  • [37] Impact of hydrodynamic conditions on optimum power generation in dual stage pressure retarded osmosis using spiral-wound membrane
    Alzainati, Nahawand
    Yadav, Sudesh
    Altaee, Ali
    Subbiah, Senthilmurugan
    Zaidi, Syed Javaid
    Zhou, John
    Al-Juboori, Raed A.
    Chen, Yingxue
    Shaheed, Mohammad Hasan
    ENERGY NEXUS, 2022, 5
  • [38] Optimization of Pressure-Retarded Osmosis with Hollow-Fiber Membrane Modules by Numerical Simulation
    Kishimoto, Michimasa
    Tanaka, Yasuhiro
    Yasukawa, Masahiro
    Goda, Shohei
    Higa, Mitsuru
    Matsuyama, Hideto
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (16) : 6687 - 6695
  • [39] EXPERIMENTAL INVESTIGATION OF SPIRAL WOUND MODULE UNDER PRESSURE RETARDED OSMOSIS PROCESS
    Vives, Luis
    Elsharqawy, Mostafa H.
    Quinones-Bolanos, Edgar
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 8, 2019,
  • [40] An Updated Model Using a Reflection Coefficient for Predicting Performance of Pressure-Retarded Osmosis
    AL-Musawi, Osamah A. H.
    Mohammad, Abdul Wahab
    Ang, Wei Lun
    Mahood, Hameed B.
    Kadhum, Abdul Amir H.
    JURNAL KEJURUTERAAN, 2024, 36 (01): : 95 - 112