Oat/Soybean Intercropping Reshape the Soil Bacterial Community for Enhanced Nutrient Cycling

被引:0
|
作者
Ma, Huaiying [1 ]
Zhou, Jie [2 ]
Ge, Junyong [3 ]
Zamanian, Kazem [4 ]
Wang, Xingyu [3 ]
Yang, Yadong [1 ]
Zeng, Zhaohai [1 ]
Zhao, Baoping [5 ]
Hu, Yuegao [1 ]
Zang, Huadong [1 ]
机构
[1] China Agr Univ, Coll Agron & Biotechnol, State Key Lab Maize Biobreeding, Beijing, Peoples R China
[2] Nanjing Agr Univ, Coll Agr, Nanjing, Peoples R China
[3] Zhangjiakou Acad Agr Sci, Zhangjiakou, Hebei, Peoples R China
[4] Leibniz Univ Hannover, Inst Earth Syst Sci, Sect Soil Sci, Hannover, Germany
[5] Inner Mongolia Agr Univ, Coll Agron, Sci Innovat Team Oats, Hohhot, Peoples R China
关键词
bacterial community; intercropping; nutrients cycling; rhizosphere processes; sustainable agriculture; MICROBIAL INTERACTIONS; ENZYME-ACTIVITIES; DIVERSITY; CROP; INDICATORS; QUALITY;
D O I
10.1002/ldr.5290
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Intercropping, particularly within legume-based systems, has been shown to enhance yields and optimize resource use efficiency. Yet, the potential contribution of intercropping on soil microbial communities and functions to soil nutrients cycling are not fully understood. We conducted the same field experiments at Youyu (Site1) and Zhangbei (Site2) in Northern China to evaluate the impact of oat/soybean intercropping on the rhizosphere soil bacterial community structure, composition, and co-occurrence networks. Our results indicated that intercropping significantly modified the bacterial community structure for both oat and soybean at Site1, with changes observed only in the oat community at Site2. Specifically, intercropping led to a substantial increase in the relative abundance of Bacteroidetes and Patescibacteria in the oat rhizosphere by 48.3% and 65.4% (Site1), respectively. Conversely, in the soybean rhizosphere at Site1, there was a notable decrease in the abundance of Patescibacteria and Nitrospirae by 32.4% and 40.0%, respectively. The soil bacterial functional groups demonstrated robust positive correlations with key soil parameters such as available nitrogen (Nmin), available phosphorus (Avail-P), and the activities of nitrogen- and phosphorus-acquiring enzymes in the rhizosphere. In conclusion, intercropping is an effective agricultural practice for enhancing nitrogen and phosphorus cycling by reshaping the soil bacterial community, offering a distinct advantage over monoculture practices. This insight underscores the potential of intercropping to foster sustainable soil nutrient management, highlighting the importance of integrating such practices into modern agricultural strategies to ensure long-term productivity and environmental sustainability.
引用
收藏
页码:5200 / 5209
页数:10
相关论文
共 50 条
  • [31] Silvopastoral systems drive the nitrogen-cycling bacterial community in soil
    do Rego Barros, Felipe Martins
    Monteiro Fracetto, Giselle Gomes
    Cury Fracetto, Felipe Jose
    Mendes Junior, Jose Petronio
    Vieira Prudencio de Araujo, Victor Lucas
    Lira Junior, Mario Andrade
    CIENCIA E AGROTECNOLOGIA, 2018, 42 (03): : 281 - 290
  • [32] Impact of Maize-Mushroom Intercropping on the Soil Bacterial Community Composition in Northeast China
    Yang, Xiaoqin
    Wang, Yang
    Sun, Luying
    Qi, Xiaoning
    Song, Fengbin
    Zhu, Xiancan
    AGRONOMY-BASEL, 2020, 10 (10):
  • [33] Nitrogen-cycling genes and rhizosphere microbial community with reduced nitrogen application in maize/soybean strip intercropping
    Yu, Lingling
    Tang, Yiling
    Wang, Zhiguo
    Gou, Yonggang
    Wang, Jianwu
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2019, 113 (01) : 35 - 49
  • [34] Changes in the Soil Bacterial Community in a Chronosequence of Temperate Walnut-Based Intercropping Systems
    Gao, Pengxiang
    Zheng, Xiaofeng
    Wang, Lai
    Liu, Bin
    Zhang, Shuoxin
    FORESTS, 2019, 10 (04)
  • [35] Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone
    Zhang, Manyun
    O'Connor, Patrick J.
    Zhang, Jinyu
    Ye, Xiaoxin
    GEODERMA, 2021, 384
  • [36] Optimized soil bacterial structure following grazing exclusion promotes soil nutrient cycling and plant growth*
    Wang, Zijie
    Deng, Hanwen
    Li, Fangdong
    Sun, Yanlin
    Hong, Soonkwan
    JOURNAL OF ARID ENVIRONMENTS, 2023, 213
  • [37] Rhizosphere soil bacterial community composition in soybean genotypes and feedback to soil P availability
    ZHOU Tao
    WANG Li
    DU Yong-li
    LIU Ting
    LI Shu-xian
    GAO Yang
    LIU Wei-guo
    YANG Wen-yu
    Journal of Integrative Agriculture, 2019, 18 (10) : 2230 - 2241
  • [38] Rhizosphere soil bacterial community composition in soybean genotypes and feedback to soil P availability
    Zhou Tao
    Wang Li
    Du Yong-li
    Liu Ting
    Li Shu-xian
    Gao Yang
    Liu Wei-guo
    Yang Wen-yu
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2019, 18 (10) : 2230 - 2241
  • [39] Intercropping Pinto Peanut in Litchi Orchard Effectively Improved Soil Available Potassium Content, Optimized Soil Bacterial Community Structure, and Advanced Bacterial Community Diversity
    Zhao, Ya
    Yan, Caibin
    Hu, Fuchu
    Luo, Zhiwen
    Zhang, Shiqing
    Xiao, Min
    Chen, Zhe
    Fan, Hongyan
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [40] Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems
    Li, Qisong
    Chen, Jun
    Wu, Linkun
    Luo, Xiaomian
    Li, Na
    Arafat, Yasir
    Lin, Sheng
    Lin, Wenxiong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (02)