A Deep Learning Based Model to Screen Colorectal Tissue for the Presence of Microsatellite Instability

被引:0
|
作者
Saraf, Sahil [1 ,2 ]
Teng, Wai Po Kevin [1 ]
Taghipour, Kaveh [1 ]
Jialdasani, Rajasa [1 ]
Chatterjee, Priti [3 ]
Chowdhury, Zachariah [4 ,5 ]
Santosh, K. V. [6 ]
机构
[1] Qrit Pte Ltd, Singapore, Singapore
[2] Singapore Gen Hosp, Singapore, Singapore
[3] Lady Hardinge Med Coll & Hosp, New Delhi, India
[4] Mahamana Pandit Madan Mohan Malaviya Canc Ctr, Varanasi, Uttar Pradesh, India
[5] Tata Mem Hosp, Homi Bhabha Canc Hosp, Varanasi, Uttar Pradesh, India
[6] RV Metropolis Lab, Bangalore, Karnataka, India
关键词
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
1292
引用
收藏
页码:S1619 / S1620
页数:2
相关论文
共 50 条
  • [21] A virtual biopsy study of microsatellite instability in gastric cancer based on deep learning radiomics
    Zinian Jiang
    Wentao Xie
    Xiaoming Zhou
    Wenjun Pan
    Sheng Jiang
    Xianxiang Zhang
    Maoshen Zhang
    Zhenqi Zhang
    Yun Lu
    Dongsheng Wang
    Insights into Imaging, 14
  • [22] Multicentric Validation of a Model Based on Phenotypic Features To Predict Microsatellite Instability in Colorectal Adenocarcinomas
    Roman, R.
    Verdu, M.
    Vidal, A.
    Calvo, M.
    Sanjuan, X.
    Jimeno, M.
    Salas, A.
    Autonell, J.
    Trias, I.
    Rodon, N.
    Gonzalez, M.
    Garcia, B.
    Puig, X.
    LABORATORY INVESTIGATION, 2009, 89 : 147A - 147A
  • [23] A novel logistic model based on clinicopathological features predicts microsatellite instability in colorectal carcinomas
    Colomer, A
    Erill, N
    Vidal, A
    Calvo, M
    Roman, R
    Verdú, M
    Cordon-Cardo, C
    Puig, X
    DIAGNOSTIC MOLECULAR PATHOLOGY, 2005, 14 (04) : 213 - 223
  • [24] Multicentric Validation of a Model Based on Phenotypic Features To Predict Microsatellite Instability in Colorectal Adenocarcinomas
    Roman, R.
    Verdu, M.
    Vidal, A.
    Calvo, M.
    Sanjuan, X.
    Jimeno, M.
    Salas, A.
    Autonell, J.
    Trias, I.
    Rodon, N.
    Gonzalez, M.
    Garcia, B.
    Puig, X.
    MODERN PATHOLOGY, 2009, 22 : 147A - 147A
  • [25] Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer
    Cao, Rui
    Yang, Fan
    Ma, Si-Cong
    Liu, Li
    Zhao, Yu
    Li, Yan
    Wu, De-Hua
    Wang, Tongxin
    Lu, Wei-Jia
    Cai, Wei-Jing
    Zhu, Hong-Bo
    Guo, Xue-Jun
    Lu, Yu-Wen
    Kuang, Jun-Jie
    Huan, Wen-Jing
    Tang, Wei-Min
    Huang, Kun
    Huang, Junzhou
    Yao, Jianhua
    Dong, Zhong-Yi
    THERANOSTICS, 2020, 10 (24): : 11080 - 11091
  • [26] xDEEP-MSI: Explainable Bias-Rejecting Microsatellite Instability Deep Learning System in Colorectal Cancer
    Bustos, Aurelia
    Paya, Artemio
    Torrubia, Andres
    Jover, Rodrigo
    Llor, Xavier
    Bessa, Xavier
    Castells, Antoni
    Carracedo, Angel
    Alenda, Cristina
    BIOMOLECULES, 2021, 11 (12)
  • [27] Deep learning can predict microsatellite instability from histology in colorectal cancer across different ethnic groups
    Pressman, Isaiah S.
    Xu, Hongming
    Kang, Jeonghyun
    Cha, Yoon Jin
    Lee, Sung Hak
    Hwang, Tae Hyun
    CANCER RESEARCH, 2020, 80 (16)
  • [28] Deep learning-based histological predictions of chromosomal instability in colorectal cancer
    Hyeon, Dongwoo
    Kim, Younghoon
    Hwang, Yaeeun
    Bae, Jeong Mo
    Kang, Gyeong Hoon
    Kim, Kwangsoo
    AMERICAN JOURNAL OF CANCER RESEARCH, 2024, 14 (09):
  • [29] Technical Validation of the Idylla Microsatellite Instability Assay on FFPE Tissue in Colorectal Cancers
    Kalachian, S.
    Khalik, R. Abdul
    Abbas, F.
    Mahfouz, R.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2023, 25 (06): : S72 - S72
  • [30] Deep learning based tissue analysis predicts outcome in colorectal cancer
    Bychkov, Dmitrii
    Linder, Nina
    Turkki, Riku
    Nordling, Stig
    Kovanen, Panu E.
    Verrill, Clare
    Walliander, Margarita
    Lundin, Mikael
    Haglund, Caj
    Lundin, Johan
    SCIENTIFIC REPORTS, 2018, 8