A Comprehensive Review on Brain-Computer Interface (BCI)-Based Machine and Deep Learning Algorithms for Stroke Rehabilitation

被引:4
|
作者
Elashmawi, Walaa H. [1 ,2 ]
Ayman, Abdelrahman [2 ]
Antoun, Mina [2 ]
Mohamed, Habiba [2 ]
Mohamed, Shehab Eldeen [2 ]
Amr, Habiba [2 ]
Talaat, Youssef [2 ]
Ali, Ahmed [3 ,4 ]
机构
[1] Suez Canal Univ, Fac Comp & Informat, Dept Comp Sci, 4-5 Km Ring Rd, Ismailia 41522, Egypt
[2] Misr Int Univ, Fac Comp Sci, Dept Comp Sci, 28 KM Cairo-Ismailia Rd, Cairo 44971, Egypt
[3] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Sci, Al Kharj 11942, Saudi Arabia
[4] Higher Future Inst Specialized Technol Studies, Cairo 3044, Egypt
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 14期
关键词
brain-computer interface (BCI); electroencephalogram (EEG); deep learning; stroke rehabilitation; MOTOR IMAGERY; FEATURE-SELECTION; EEG SIGNALS; CLASSIFICATION; TECHNOLOGY; FRAMEWORK; FEATURES; OUTCOMES;
D O I
10.3390/app14146347
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This literature review explores the pivotal role of brain-computer interface (BCI) technology, coupled with electroencephalogram (EEG) technology, in advancing rehabilitation for individuals with damaged muscles and motor systems. This study provides a comprehensive overview of recent developments in BCI and motor control for rehabilitation, emphasizing the integration of user-friendly technological support and robotic prosthetics powered by brain activity. This review critically examines the latest strides in BCI technology and its application in motor skill recovery. Special attention is given to prevalent EEG devices adaptable for BCI-driven rehabilitation. The study surveys significant contributions in the realm of machine learning-based and deep learning-based rehabilitation evaluation. The integration of BCI with EEG technology demonstrates promising outcomes for enhancing motor skills in rehabilitation. The study identifies key EEG devices suitable for BCI applications, discusses advancements in machine learning approaches for rehabilitation assessment, and highlights the emergence of novel robotic prosthetics powered by brain activity. Furthermore, it showcases successful case studies illustrating the practical implementation of BCI-driven rehabilitation techniques and their positive impact on diverse patient populations. This review serves as a cornerstone for informed decision-making in the field of BCI technology for rehabilitation. The results highlight BCI's diverse advantages, enhancing motor control and robotic integration. The findings highlight the potential of BCI in reshaping rehabilitation practices and offer insights and recommendations for future research directions. This study contributes significantly to the ongoing transformation of BCI technology, particularly through the utilization of EEG equipment, providing a roadmap for researchers in this dynamic domain.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] ELECTROCORTICOGRAPHY IN A BRAIN-COMPUTER INTERFACE (BCI) PARADIGM
    Shih, Jerry J.
    Krusienski, D. J.
    EPILEPSIA, 2009, 50 : 327 - 327
  • [32] ELECTROCORTICOGRAPHY IN A BRAIN-COMPUTER INTERFACE (BCI) PARADIGM
    Shih, Jerry J.
    Krusienski, D. J.
    EPILEPSIA, 2009, 50 : 390 - 390
  • [33] Brain-Computer Interface for Lower Extremity Rehabilitation in Chronic Stroke
    Sieghartsleitner, S.
    Fernandes, F.
    Sebastian-Romagosa, M.
    Cho, W.
    Ortner, R.
    Guger, C.
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 280 - 280
  • [34] Comprehensive Review: Machine and Deep Learning in Brain Stroke Diagnosis
    Fernandes, Joao N. D.
    Cardoso, Vitor E. M.
    Comesana-Campos, Alberto
    Pinheira, Alberto
    SENSORS, 2024, 24 (13)
  • [35] eConHand: A Wearable Brain-Computer Interface System for Stroke Rehabilitation
    Qin, Zhun
    Xu, Yao
    Shu, Xiaokang
    Hua, Lei
    Sheng, Xinjun
    Zhu, Xiangyang
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 734 - 737
  • [36] Brain-computer interface treatment for gait rehabilitation in stroke patients
    Sebastian-Romagosa, Marc
    Cho, Woosang
    Ortner, Rupert
    Sieghartsleitner, Sebastian
    Von Oertzen, Tim J.
    Kamada, Kyousuke
    Laureys, Steven
    Allison, Brendan Z.
    Guger, Christoph
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [37] A comprehensive review of EEG-based brain-computer interface paradigms
    Abiri, Reza
    Borhani, Soheil
    Sellers, Eric W.
    Jiang, Yang
    Zhao, Xiaopeng
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (01)
  • [38] Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke
    Buch, Ethan
    Weber, Cornelia
    Cohen, Leonardo G.
    Braun, Christoph
    Dimyan, Michael A.
    Ard, Tyler
    Mellinger, Jurgen
    Caria, Andrea
    Soekadar, Surjo
    Fourkas, Alissa
    Birbaumer, Niels
    STROKE, 2008, 39 (03) : 910 - 917
  • [39] Active Rehabilitation Gloves Based on Brain-Computer Interfaces and Deep Learning
    Zhu, Jiahua
    Shi, Xingzhao
    Cheng, Xingyue
    Yang, Qirui
    Xiao, Ruoxiu
    JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING, 2023, 63 : 49 - 62
  • [40] Early Findings on Functional Connectivity Correlates of Behavioral Outcomes of Brain-Computer Interface Stroke Rehabilitation Using Machine Learning
    Mohanty, Rosaleena
    Sinha, Anita M.
    Remsik, Alexander B.
    Dodd, Keith C.
    Young, Brittany M.
    Jacobson, Tyler
    McMillan, Matthew
    Thoma, Jaclyn
    Advani, Hemali
    Nair, Veena A.
    Kang, Theresa J.
    Caldera, Kristin
    Edwards, Dorothy F.
    Williams, Justin C.
    Prabhakaran, Vivek
    FRONTIERS IN NEUROSCIENCE, 2018, 12