Simultaneous Triboelectric and Mechanoluminescence Sensing Toward Self-Powered Applications

被引:1
|
作者
Hajra, Sugato [1 ]
Panda, Swati [1 ]
Song, Seongkyu [2 ]
Song, Heewon [1 ]
Panigrahi, Basanta Kumar [3 ]
Jeong, Soon Moon [2 ,4 ]
Mishra, Yogendra Kumar [5 ]
Kim, Hoe Joon [1 ,6 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Robot & Mechatron Engn, Daegu 42988, South Korea
[2] DGIST, Div Energy Technol, Daegu 42988, South Korea
[3] Siksha O Anusandhan Univ, Dept Elect Engn, Bhubaneswar 751030, India
[4] DGIST, Dept Interdisciplinary Engn, Daegu 42988, South Korea
[5] Univ Southern Denmark, Mads Clausen Inst, Smart Mat, NanoSYD, Alsion 2, DK-6400 Sonderborg, Denmark
[6] DGIST, Robot & Mechatron Res Ctr, Daegu 42988, South Korea
来源
ADVANCED SUSTAINABLE SYSTEMS | 2024年 / 8卷 / 12期
基金
新加坡国家研究基金会;
关键词
mechanoluminescence; SOS safety; sports; triboelectric; COMMUNICATION; NANOGENERATOR;
D O I
10.1002/adsu.202400609
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Simultaneous phenomena of triboelectricity and mechanoluminescence (ML) acquire vital insights into the mechanics of charge separation and recombination, as well as the relationship between mechanical stress and light emission. In the present work, polydimethylsiloxane (PDMS) and ZnS:Cu particle-based composites are fabricated, which have good ML characteristics and can generate electricity via contact electrification. ML, in conjunction with a triboelectric nanogenerator (TENG), contributes by producing power from mechanical operations while also giving vital visual input in the form of light emission. This dual capability improves user awareness and efficiency in a variety of applications, making mechanical systems and wearable devices easier to monitor and optimize. To accomplish this, a single-electrode mode silver (Ag) nanowires embedded PDMS-ZnS: Cu-based TENG device is developed and achieved an electrical output of 60 V, 395 nA, and 15 nC by using a linear motor. Furthermore, the combined ML and TENG device is employed in various cases of safety monitoring. This integration provides self-powered devices that detect mechanical stress, delivering real-time warnings and illumination signals for increased safety and communication in demanding conditions such as SOS signaling, underwater driving, deep mining, and sports. Simultaneous mechanoluminescent and triboelectric nanogenerators are critical for self-powered safety applications, as they provide continuous, real-time energy harvesting, and light generation without external power sources. This dual-functionality ensures enhanced visibility and alert systems, especially in emergency scenarios, improving safety and reliability in harsh environments while promoting sustainable, energy-efficient solutions. image
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Self-powered triboelectric MEMS accelerometer
    Alzgool, Mohammad
    Tian, Yu
    Davaji, Benyamin
    Towfighian, Shahrzad
    NANO ENERGY, 2023, 109
  • [32] A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node
    Tang, Wei
    Zhou, Tao
    Zhang, Chi
    Fan, Feng Ru
    Han, Chang Bao
    Wang, Zhong Lin
    NANOTECHNOLOGY, 2014, 25 (22)
  • [33] Seesaw structured triboelectric nanogenerator with enhanced output performance and its applications in self-powered motion sensing
    Lin, Hongbin
    Liu, Ying
    Chen, Shuailin
    Xu, Qinghao
    Wang, Shutang
    Hu, Tao
    Pan, Peifeng
    Wang, Yizhou
    Zhang, Yaoli
    Li, Ning
    Li, Yi
    Ma, Yanwen
    Xie, Yannan
    Wang, Lianhui
    NANO ENERGY, 2019, 65
  • [34] Multilayered Functional Triboelectric Polymers for Self-Powered Wearable Applications: A Review
    Kim, Minsoo P.
    MICROMACHINES, 2023, 14 (08)
  • [35] Advanced Applications of Porous Materials in Triboelectric Nanogenerator Self-Powered Sensors
    Duan, Zhengyin
    Cai, Feng
    Chen, Yuxin
    Chen, Tianying
    Lu, Peng
    SENSORS, 2024, 24 (12)
  • [36] Design and Fabrication of Polymer Triboelectric Nanogenerators for Self-Powered Insole Applications
    Huang, You-Jun
    Chung, Chen-Kuei
    POLYMERS, 2023, 15 (20)
  • [37] Upcycling of Waste Materials for the Development of Triboelectric Nanogenerators and Self-Powered Applications
    Basith, Sayyid Abdul
    Khandelwal, Gaurav
    Mulvihill, Daniel M.
    Chandrasekhar, Arunkumar
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (51)
  • [38] Highly Sensitive Self-Powered Biomedical Applications Using Triboelectric Nanogenerator
    Kamilya, Tapas
    Park, Jinhyoung
    MICROMACHINES, 2022, 13 (12)
  • [39] Self-Powered Triboelectric Inertial Sensor Ball for IoT and Wearable Applications
    Shi, Qiongfeng
    Wang, Hao
    He, Tianyiyi
    Lee, Chengkuo
    17TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2017), 2018, 1052
  • [40] Miniature and cost-effective self-powered triboelectric sensing system toward rapid detection of puerarin concentration
    Su, Chang
    Shao, Jiajia
    Yu, Zeyang
    Hasan, Al Mahadi
    Bao, Chengmin
    Bowen, Chris R.
    Li, Chuanbo
    Wang, Zhong Lin
    Yang, Ya
    INFOMAT, 2025, 7 (02)