Simultaneous Triboelectric and Mechanoluminescence Sensing Toward Self-Powered Applications

被引:1
|
作者
Hajra, Sugato [1 ]
Panda, Swati [1 ]
Song, Seongkyu [2 ]
Song, Heewon [1 ]
Panigrahi, Basanta Kumar [3 ]
Jeong, Soon Moon [2 ,4 ]
Mishra, Yogendra Kumar [5 ]
Kim, Hoe Joon [1 ,6 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Robot & Mechatron Engn, Daegu 42988, South Korea
[2] DGIST, Div Energy Technol, Daegu 42988, South Korea
[3] Siksha O Anusandhan Univ, Dept Elect Engn, Bhubaneswar 751030, India
[4] DGIST, Dept Interdisciplinary Engn, Daegu 42988, South Korea
[5] Univ Southern Denmark, Mads Clausen Inst, Smart Mat, NanoSYD, Alsion 2, DK-6400 Sonderborg, Denmark
[6] DGIST, Robot & Mechatron Res Ctr, Daegu 42988, South Korea
来源
ADVANCED SUSTAINABLE SYSTEMS | 2024年 / 8卷 / 12期
基金
新加坡国家研究基金会;
关键词
mechanoluminescence; SOS safety; sports; triboelectric; COMMUNICATION; NANOGENERATOR;
D O I
10.1002/adsu.202400609
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Simultaneous phenomena of triboelectricity and mechanoluminescence (ML) acquire vital insights into the mechanics of charge separation and recombination, as well as the relationship between mechanical stress and light emission. In the present work, polydimethylsiloxane (PDMS) and ZnS:Cu particle-based composites are fabricated, which have good ML characteristics and can generate electricity via contact electrification. ML, in conjunction with a triboelectric nanogenerator (TENG), contributes by producing power from mechanical operations while also giving vital visual input in the form of light emission. This dual capability improves user awareness and efficiency in a variety of applications, making mechanical systems and wearable devices easier to monitor and optimize. To accomplish this, a single-electrode mode silver (Ag) nanowires embedded PDMS-ZnS: Cu-based TENG device is developed and achieved an electrical output of 60 V, 395 nA, and 15 nC by using a linear motor. Furthermore, the combined ML and TENG device is employed in various cases of safety monitoring. This integration provides self-powered devices that detect mechanical stress, delivering real-time warnings and illumination signals for increased safety and communication in demanding conditions such as SOS signaling, underwater driving, deep mining, and sports. Simultaneous mechanoluminescent and triboelectric nanogenerators are critical for self-powered safety applications, as they provide continuous, real-time energy harvesting, and light generation without external power sources. This dual-functionality ensures enhanced visibility and alert systems, especially in emergency scenarios, improving safety and reliability in harsh environments while promoting sustainable, energy-efficient solutions. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Triboelectric nanogenerator-enabled self-powered strategies for sensing applications
    Qu, Xiaolin
    Liu, Xiaoshi
    Yue, Yuyan
    Tang, Yuguo
    Miao, Peng
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2025, 185
  • [2] Electromagnetic Pulse Powered by a Triboelectric Nanogenerator with Applications in Accurate Self-Powered Sensing and Security
    Zhang, Steven L.
    Roach, Devin J.
    Xu, Sixing
    Wang, Peng
    Zhang, Weiqiang
    Qi, H. Jerry
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (10)
  • [3] Triboelectric Nanogenerator for Self-Powered Gas Sensing
    Zhang, Dongzhi
    Zhou, Lina
    Wu, Yan
    Yang, Chunqing
    Zhang, Hao
    SMALL, 2024, 20 (51)
  • [4] Self-Powered Triboelectric Nanogenerator for Security Applications
    Munirathinam, Prabavathi
    Chandrasekhar, Arunkumar
    MICROMACHINES, 2023, 14 (03)
  • [5] Toward self-powered photodetection enabled by triboelectric nanogenerators
    Wen, Zhen
    Fu, Jingjing
    Han, Lei
    Liu, Yina
    Peng, Mingfa
    Zheng, Li
    Zhu, Yuyan
    Sun, Xuhui
    Zi, Yunlong
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (44) : 11893 - 11902
  • [6] A self-powered triboelectric microfluidic system for liquid sensing
    Kim, Wook
    Choi, Daehwan
    Kwon, Jang-Yeon
    Choi, Dukhyun
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (29) : 14069 - 14076
  • [7] Self-Powered Active Sensing Based on Triboelectric Generators
    Khandelwal, Gaurav
    Dahiya, Ravinder
    ADVANCED MATERIALS, 2022, 34 (33)
  • [8] Optical Emission from Triboelectric Gas Discharge toward Self-Powered Gas Sensing
    Fu, Jingjing
    Song, Ziwu
    Xu, Guoqiang
    Wang, Haoyu
    Li, Xinyuan
    Wang, Jiaqi
    Ding, Wenbo
    Ren, Wei
    Lei, Iek Man
    Zi, Yunlong
    ADVANCED OPTICAL MATERIALS, 2023, 11 (09)
  • [9] Bioinspired Triboelectric Nanosensors for Self-Powered Wearable Applications
    Zheng, Youbin
    Omar, Rawan
    Hu, Zhipeng
    Duong, Tuan
    Wang, Jing
    Haick, Hossam
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 9 (05) : 2087 - 2102
  • [10] Triboelectric nanogenerators for self-powered sensors and other applications
    Lee, Chengkuo
    Qin, Yong
    Wang, Yi-Cheng
    MRS BULLETIN, 2025,