Machine learning-assisted performance prediction from the synthesis conditions of nanofiltration membranes

被引:2
|
作者
Sutariya, Bhaumik [1 ,2 ]
Sarkar, Pulak [1 ,2 ]
Indurkar, Pankaj D. [1 ,2 ]
Karan, Santanu [1 ,2 ]
机构
[1] CSIR, Membrane Sci & Separat Technol Div, Cent Salt & Marine Chem Res Inst, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Thin-film composite membrane; Polyamide; Nanofiltration membrane; Permeance-selectivity tradeoff; Machine learning; NEURAL-NETWORKS;
D O I
10.1016/j.seppur.2024.128960
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Optimizing membrane fabrication conditions, including monomer and catalyst concentrations, reaction time, etc., is crucial for achieving high-performance membranes. However, the multitude of variables involved can result in a complex and laborious permutation process, making trial-and-error optimization challenging. To address this issue, we developed a conventional multiple linear regression model and machine learning (ML) models, specifically random forest (RF) and multi-layer perceptron (MLP), to predict the performance of nanofiltration membranes in terms of key parameters such as pure water permeance or PWP (LMH/bar), Na2SO4 rejection (%), and NaCl rejection (%), based on specified input variable ranges. The input variables utilized to construct the models are the concentration of piperazine (PIP) (0.01-2 wt%), the concentration of trimesoyl chloride (TMC) (0.05-0.15 wt%), the concentration of sodium lauryl sulfate (SLS) (0-10 mM), and reaction time (5-1200 s). The conventional regression model failed to predict the membrane performance. The RF model exhibited the best prediction capability for PWP and NaCl rejection with the R2 of 0.9806 and 0.9812 for training, and 0.9669 and 0.9082 for testing, respectively. Similarly, the MLP model outperformed the RF model in predicting Na2SO4 rejection with an R2 of 0.9972 for testing and 0.9844 for training. The best membrane exhibited permeance ranging from 16 to 20 LMH/bar and selectivity between NaCl and Na2SO4 of over 4000, was facilitated by specific conditions. These conditions included lower concentrations of PIP (0.05-0.1 wt%), intermediate concentration of TMC (0.1 wt%), lower concentration of SLS (1 mM), and shorter reaction times (5-30 s). The best-performing ML-based models have been used to provide insights into the relative importance of these input variables in determining membrane performance, thereby aiding in correlating model predictions with fundamental principles of membrane fabrication processes.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Towards a Machine Learning-Assisted Kernel with LAKE
    Fingler, Henrique
    Tarte, Isha
    Yu, Hangchen
    Szekely, Ariel
    Hu, Bodun
    Akella, Aditya
    Rossbach, Christopher J.
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2023, 2023, : 846 - 861
  • [32] Machine Learning-Assisted Segmentation of Pancreas MRI
    Tirado-Velez, Pedro L.
    Kang, Sanghoon
    Ju, Huiwen
    Campbell-Thompson, Martha
    Kim, Sarah
    Lamb, Damon
    DIABETES, 2024, 73
  • [33] Machine Learning-Assisted Analysis of Electrochemical Biosensors
    Deshpande, Shreyas
    Datar, Rishikesh
    Pramanick, Bidhan
    Bacher, Gautam
    IEEE SENSORS LETTERS, 2023, 7 (09)
  • [34] Machine learning-assisted crystal engineering of a zeolite
    Xinyu Li
    He Han
    Nikolaos Evangelou
    Noah J. Wichrowski
    Peng Lu
    Wenqian Xu
    Son-Jong Hwang
    Wenyang Zhao
    Chunshan Song
    Xinwen Guo
    Aditya Bhan
    Ioannis G. Kevrekidis
    Michael Tsapatsis
    Nature Communications, 14
  • [35] Machine Learning-assisted Management of a Virtualized Network
    Hayashi, Michiaki
    2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2018,
  • [36] Machine learning-assisted smart epitaxy of Ⅲ-Ⅴ semiconductors
    Yue Hao
    ScienceChina(Materials), 2024, 67 (09) : 3041 - 3042
  • [37] Visualizing Uncertainty in Machine Learning-Assisted Measurements
    Shirmohammadi, Shervin
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2023, 26 (07) : 20 - 27
  • [38] Machine Learning-Assisted Hybrid ReaxFF Simulations
    Yilmaz, Dundar E.
    Woodward, William Hunter
    van Duin, Adri C. T.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (11) : 6705 - 6712
  • [39] Machine learning-assisted crystal engineering of a zeolite
    Li, Xinyu
    Han, He
    Evangelou, Nikolaos
    Wichrowski, Noah J.
    Lu, Peng
    Xu, Wenqian
    Hwang, Son-Jong
    Zhao, Wenyang
    Song, Chunshan
    Guo, Xinwen
    Bhan, Aditya
    Kevrekidis, Ioannis G.
    Tsapatsis, Michael
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [40] Machine Learning-Assisted Design of Material Properties
    Kadulkar, Sanket
    Sherman, Zachary M.
    Ganesan, Venkat
    Truskett, Thomas M.
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 235 - 254