Machine learning-assisted performance prediction from the synthesis conditions of nanofiltration membranes

被引:2
|
作者
Sutariya, Bhaumik [1 ,2 ]
Sarkar, Pulak [1 ,2 ]
Indurkar, Pankaj D. [1 ,2 ]
Karan, Santanu [1 ,2 ]
机构
[1] CSIR, Membrane Sci & Separat Technol Div, Cent Salt & Marine Chem Res Inst, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Thin-film composite membrane; Polyamide; Nanofiltration membrane; Permeance-selectivity tradeoff; Machine learning; NEURAL-NETWORKS;
D O I
10.1016/j.seppur.2024.128960
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Optimizing membrane fabrication conditions, including monomer and catalyst concentrations, reaction time, etc., is crucial for achieving high-performance membranes. However, the multitude of variables involved can result in a complex and laborious permutation process, making trial-and-error optimization challenging. To address this issue, we developed a conventional multiple linear regression model and machine learning (ML) models, specifically random forest (RF) and multi-layer perceptron (MLP), to predict the performance of nanofiltration membranes in terms of key parameters such as pure water permeance or PWP (LMH/bar), Na2SO4 rejection (%), and NaCl rejection (%), based on specified input variable ranges. The input variables utilized to construct the models are the concentration of piperazine (PIP) (0.01-2 wt%), the concentration of trimesoyl chloride (TMC) (0.05-0.15 wt%), the concentration of sodium lauryl sulfate (SLS) (0-10 mM), and reaction time (5-1200 s). The conventional regression model failed to predict the membrane performance. The RF model exhibited the best prediction capability for PWP and NaCl rejection with the R2 of 0.9806 and 0.9812 for training, and 0.9669 and 0.9082 for testing, respectively. Similarly, the MLP model outperformed the RF model in predicting Na2SO4 rejection with an R2 of 0.9972 for testing and 0.9844 for training. The best membrane exhibited permeance ranging from 16 to 20 LMH/bar and selectivity between NaCl and Na2SO4 of over 4000, was facilitated by specific conditions. These conditions included lower concentrations of PIP (0.05-0.1 wt%), intermediate concentration of TMC (0.1 wt%), lower concentration of SLS (1 mM), and shorter reaction times (5-30 s). The best-performing ML-based models have been used to provide insights into the relative importance of these input variables in determining membrane performance, thereby aiding in correlating model predictions with fundamental principles of membrane fabrication processes.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Machine Learning-Assisted Performance Testing
    Moghadam, Mahshid Helali
    ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2019, : 1187 - 1189
  • [2] Machine learning-assisted prediction of water adsorption isotherms and cooling performance
    Liu, Zhilu
    Shen, Dongchen
    Cai, Shanshan
    Tu, Zhengkai
    Li, Song
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (36) : 19455 - 19464
  • [3] Ultrahigh stable laminar graphene membranes for effective ionic and molecular nanofiltration with a machine learning-assisted study
    Paechotrattanakul, Poonsawat
    Jitapunkul, Kulpavee
    Iamprasertkun, Pawin
    Srinoi, Pannaree
    Sirisaksoontorn, Weekit
    Hirunpinyopas, Wisit
    NANOSCALE, 2023, 15 (19) : 8716 - 8729
  • [4] Machine learning-assisted colloidal synthesis: A review
    Gulevich, D. G.
    Nabiev, I. R.
    Samokhvalov, P. S.
    MATERIALS TODAY CHEMISTRY, 2024, 35
  • [5] Machine Learning-Assisted Synthesis of Operational Amplifier
    Lin, Xinyu
    Wu, Qi
    Wang, Haiming
    2024 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY, ICMMT, 2024,
  • [6] Machine Learning-Assisted Carbon Dot Synthesis: Prediction of Emission Color and Wavelength
    Senanayake, Ravithree D.
    Yao, Xiaoxiao
    Froehlich, Clarice E.
    Cahill, Meghan S.
    Sheldon, Trever R.
    McIntire, Mary
    Haynes, Christy L.
    Hernandez, Rigoberto
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (23) : 5918 - 5928
  • [7] Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides
    Bhangu, Sukhvir Kaur
    Welch, Nicholas
    Lewis, Morgan
    Li, Fanyi
    Gardner, Brint
    Thissen, Helmut
    Kowalczyk, Wioleta
    SMALL SCIENCE, 2025,
  • [8] Machine learning-assisted development of gas separation membranes: A review
    Li, An
    Chu, Jianchun
    Huang, Shaoxuan
    Liu, Yongqi
    He, Maogang
    Liu, Xiangyang
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2025, 14
  • [9] Machine learning-assisted investigations toward polymer synthesis
    Zhang, Zexi
    Cai, Zhanxiang
    Zhang, Wenbin
    Lu, Hua
    Chen, Mao
    CHINESE SCIENCE BULLETIN-CHINESE, 2025, 70 (4-5): : 471 - 480
  • [10] Machine learning-assisted macro simulation for yard arrival prediction
    Minbashi, Niloofar
    Sipila, Hans
    Palmqvist, Carl -William
    Bohlin, Markus
    Kordnejad, Behzad
    JOURNAL OF RAIL TRANSPORT PLANNING & MANAGEMENT, 2023, 25