Enhancing wound healing through deep reinforcement learning for optimal therapeutics

被引:0
|
作者
Lu, Fan [1 ]
Zlobina, Ksenia [1 ]
Rondoni, Nicholas A. [1 ]
Teymoori, Sam [1 ]
Gomez, Marcella [1 ]
机构
[1] Univ Calif Santa Cruz, Baskin Sch Engn, Appl Math, Santa Cruz, CA 95064 USA
来源
ROYAL SOCIETY OPEN SCIENCE | 2024年 / 11卷 / 07期
关键词
deep learning; reinforcement learning; optimal adaptive control; wound healing; optimal treatment regime; CLOSED-LOOP CONTROL; PROPOFOL ANESTHESIA; SYSTEMS; DRUG; APPROXIMATION;
D O I
10.1098/rsos.240228
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding the optimal treatment strategy to accelerate wound healing is of utmost importance, but it presents a formidable challenge owing to the intrinsic nonlinear nature of the process. We propose an adaptive closed-loop control framework that incorporates deep learning, optimal control and reinforcement learning to accelerate wound healing. By adaptively learning a linear representation of nonlinear wound healing dynamics using deep learning and interactively training a deep reinforcement learning agent for tracking the optimal signal derived from this representation without the need for intricate mathematical modelling, our approach has not only successfully reduced the wound healing time by 45.56% compared to the one without any treatment, but also demonstrates the advantages of offering a safer and more economical treatment strategy. The proposed methodology showcases a significant potential for expediting wound healing by effectively integrating perception, predictive modelling and optimal adaptive control, eliminating the need for intricate mathematical models.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Enhancing arrhythmia prediction through an adaptive deep reinforcement learning framework for ECG signal analysis
    Serhani, Mohamed Adel
    Ismail, Heba
    El-Kassabi, Hadeel T.
    Al Breiki, Hamda
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 101
  • [22] Enhancing Pokemon VGC Player Performance: Intelligent Agents Through Deep Reinforcement Learning and Neuroevolution
    Rodriguez, Gian
    Villanueva, Edwin
    Baldeon, Johan
    HCI IN GAMES, PT I, HCI-GAMES 2024, 2024, 14730 : 275 - 294
  • [23] Enhancing Explainability of Deep Reinforcement Learning Through Selective Layer-Wise Relevance Propagation
    Huber, Tobias
    Schiller, Dominik
    Andre, Elisabeth
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2019, 2019, 11793 : 188 - 202
  • [24] Optimal chaos control through reinforcement learning
    Gadaleta, S
    Dangelmayr, G
    CHAOS, 1999, 9 (03) : 775 - 788
  • [25] Learn to Steer through Deep Reinforcement Learning
    Wu, Keyu
    Esfahani, Mahdi Abolfazli
    Yuan, Shenghai
    Wang, Han
    SENSORS, 2018, 18 (11)
  • [26] Autonomous exploration through deep reinforcement learning
    Yan, Xiangda
    Huang, Jie
    He, Keyan
    Hong, Huajie
    Xu, Dasheng
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2023, 50 (05): : 793 - 803
  • [27] Nonlinear Optimal Control Using Deep Reinforcement Learning
    Bucci, Michele Alessandro
    Semeraro, Onofrio
    Allauzen, Alexandre
    Cordier, Laurent
    Mathelin, Lionel
    IUTAM LAMINAR-TURBULENT TRANSITION, 2022, 38 : 279 - 290
  • [28] Enhancing of Wound Healing in Burn Patients through Candida albicans β-Glucan
    Abedini, Fateme
    Mohammadi, Shahla Roudbar
    Dahmardehei, Mostafa
    Ajami, Marjan
    Salimi, Maryam
    Khalandi, Halala
    Mohsenzadegan, Monireh
    Seif, Farhad
    Shirvan, Bahador Nikoueian
    Yaalimadad, Sanaz
    Roudbary, Maryam
    Rodrigues, Celia F.
    JOURNAL OF FUNGI, 2022, 8 (03)
  • [29] Enhancing wound healing through innovative technologies: microneedle patches and iontophoresis
    Jin, Yong Xun
    Chien, Pham Ngoc
    Nga, Pham Thi
    Zhang, Xin Rui
    Giang, Nguyen Ngan
    Le, Linh Thi Thuy
    Trinh, Thuy-Tien Thi
    Zhou, Shu Yi
    Nam, Sun Young
    Heo, Chan Yeong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [30] Deep reinforcement learning for optimal experimental design in biology
    Treloar, Neythen J.
    Braniff, Nathan
    Ingalls, Brian
    Barnes, Chris P.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (11)