MoL-YOLOv7: Streamlining Industrial Defect Detection With an Optimized YOLOv7 Approach

被引:0
|
作者
Raj, G. Deepti [1 ]
Prabadevi, B. [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci Engn & Informat Syst, Vellore 632006, Tamil Nadu, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; YOLO; Defect detection; Steel; Computational modeling; Data models; Surface cracks; YOLOv7; MobileNet; loss functions; attention mechanisms; steel surface defect detection; SURFACE; NETWORK;
D O I
10.1109/ACCESS.2024.3447035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Manually checking for defects on industrial parts such as steel surfaces is ineffective, error-prone, and can damage a company's reputation. Current automated methods often lack accuracy or real-time detection capabilities. Early detection allows for timely corrective action, such as removing defective parts or adjusting production parameters which can streamline the manufacturing process and improve brand reputation, customer satisfaction, and compliance with industry standards. This paper presents MoL-YOLOv7 (MobileNet integrated with attention and loss function to You Only Look Once version 7), a deep learning model for accurate and real-time detection of steel defects. MoL-YOLOv7 modifies the YOLOv7 model by inserting a MobileNet block that reduces computational complexity while maintaining accuracy, allowing for faster detection. Adding the SimAm (Simple Parameter free Attention module) attention mechanism to the MobileNet block refines feature representations for complex tasks such as steel defect detection. Finally, replacing loss functions with EIoU (Effective IoU), WIoU (Wise-IoU), and SIoU (Scylla-IoU) improves the localization accuracy and addresses the class imbalance in the data. The modified model achieves high accuracy and real-time detection, enabling a streamlined defect detection process. Experimental results show that the modified model involving different loss functions used in this work achieves high accuracy, i.e. 0.5% to 3.5% higher than the original model YOLOv7. The superiority and validity of our modified model are demonstrated by comparison with other attention mechanisms and loss functions integrated into YOLOv7, and also on different texture datasets, putting forward a modified method to detect surface defects on steel strips in daily operations.
引用
收藏
页码:117090 / 117101
页数:12
相关论文
共 50 条
  • [21] A Photovoltaic Panel Defect Detection Method Based on the Improved Yolov7
    Liu, Hongzhi
    Zhang, Fenghe
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 359 - 362
  • [22] Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
    Huang, Peile
    Wang, Shenghuai
    Chen, Jianyu
    Li, Weijie
    Peng, Xing
    SENSORS, 2023, 23 (16)
  • [23] A Steel Surface Defect Detection Algorithm Based on Improved YOLOv7
    Mao, Yihai
    Zhang, Hongyi
    Gao, Xingen
    Luan, Shen
    Lin, Yuxing
    Qi, Xuanhao
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1096 - 1101
  • [24] Insulator-Defect Detection Algorithm Based on Improved YOLOv7
    Zheng, Jianfeng
    Wu, Hang
    Zhang, Han
    Wang, Zhaoqi
    Xu, Weiyue
    SENSORS, 2022, 22 (22)
  • [25] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303
  • [26] PBA-YOLOv7: An Object Detection Method Based on an Improved YOLOv7 Network
    Sun, Yang
    Li, Yi
    Li, Song
    Duan, Zehao
    Ning, Haonan
    Zhang, Yuhang
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [27] YOLOv7-PE: A Precise and Efficient Enhancement of YOLOv7 for Underwater Target Detection
    Li, Zhichuang
    Xie, Haijun
    Feng, Jingyi
    Wang, Zhenbo
    Yuan, Zizhao
    IEEE ACCESS, 2024, 12 : 133937 - 133951
  • [28] Improved Cherry Detection Method at Night Based on YOLOv7: YOLOv7-Cherry
    Gai, Rongli
    Kong, Xiangzhou
    Qin, Shan
    Wei, Kai
    Computer Engineering and Applications, 2024, 60 (21) : 315 - 323
  • [29] YOLOv7-SN: Underwater Target Detection Algorithm Based on Improved YOLOv7
    Zhao, Ming
    Zhou, Huibo
    Li, Xue
    SYMMETRY-BASEL, 2024, 16 (05):
  • [30] MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7
    Qin, Zhiyong
    Chen, Dike
    Wang, Hongyuan
    IEEE ACCESS, 2024, 12 : 42642 - 42650