Effect of oxygen on the microstructure, tensile properties and deformation behaviours of a biocompatible Ti40Zr25Nb25Ta10 high entropy alloy

被引:0
|
作者
Mustafi, L. [1 ]
Nguyen, V. T. [2 ]
Song, T. [1 ]
Deng, Q. [3 ]
Jiang, L. [4 ]
Chen, X. B. [3 ]
Fabijanic, D. M. [4 ]
Qian, M. [1 ]
机构
[1] RMIT Univ, Ctr Addit Mfg, Sch Engn, Melbourne, Vic 3001, Australia
[2] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia
[3] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[4] Deakin Univ, Inst Frontier Mat, Waurn Ponds, Vic 3216, Australia
关键词
High entropy alloy; Titanium; Tantalum; Niobium; Zirconium; Deformation; Corrosion resistance; MECHANICAL-PROPERTIES; TITANIUM-ALLOYS; PHASE-STABILITY; SOLID-SOLUTION; TI; TI-6AL-7NB; CORROSION; DESIGN; STRESS;
D O I
10.1016/j.jmst.2024.06.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of oxygen on the microstructure, mechanical properties and deformation behaviours of as-cast biocompatible Ti40Zr25Nb25Ta10Ox ( x = 0.5, 1.0 and 2.0 at.%) high entropy alloys (HEAs) was investigated. All three oxygen-doped HEAs solidified as a single body-centred cubic (BCC) phase grain structure with predominantly high-angle grain boundaries following the Mackenzie prediction. Increasing oxygen content significantly increased tensile strength at a rate of about 180 MPa/1.0 at.%, but decreased tensile ductility. However, at the addition level of 0.5 at.% O, the as-cast Ti40Zr25Nb25Ta10O0.5 HEA can achieve a yield strength ( sigma 0.2 ) of 947 +/- 44 MPa and an elongation at break ( epsilon f ) of 9.5 % +/- 1.8 %. These properties make this HEA comparable to medical grade Ti-6Al-4V (wt.%) alloy (ASTM Grade 23 titanium) ( sigma 0.2 >= 759 MPa; epsilon f >= 10 %) in its ability to absorb energy in plastic deformation, while offering greater resistance to permanent shape changes. Due to the possible strong interaction between oxygen atoms and dislocations through pinning and de-pinning, all oxygen-doped HEAs exhibited discontinuous yielding, whereas the low oxygen base HEA underwent normal yielding. No oxygen clusters were detected through atom probe tomography (APT) analysis. The deformation mechanism depends on oxygen content. The plastic deformation of the Ti40Zr25Nb25Ta10O0.5 HEA occurred through the formation of primary and secondary shear bands. In contrast, planar slip bands and a limited number of primary shear bands (without secondary shear bands) were observed in the Ti40Zr25Nb25Ta10O2.0 HEA. To ensure sufficient ductility, the oxygen content should be limited to 0.5 at.%. Furthermore, at this oxygen content, the corrosion resistance of the Ti40Zr25Nb25Ta10O0.5 HEA in Hank's solution is comparable to that of Ti-6Al-4V. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:62 / 73
页数:12
相关论文
共 50 条
  • [21] Temperature dependence of mechanical and thermodynamic properties of Ti(25+x)Zr25Nb25Ta(25-x) (x ≤ 20) refractory high entropy alloys: Influences of substitution of Ti for Ta
    Yang, Min
    Shao, Lin
    Duan, Jia-Ming
    Chen, Xiao-Tao
    Tang, Bi-Yu
    PHYSICA B-CONDENSED MATTER, 2021, 606
  • [22] Equiaxed Microstructure Evolution and Tensile Properties of Ti-22Al-25Nb Alloy
    Zheng Youping
    Zeng Weidong
    Wang Wei
    Li Dong
    Ma Xiong
    Liang Xiaobo
    Zhang Jianwei
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 : 200 - 203
  • [23] Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40
    Soni, V
    Senkov, O. N.
    Couzinie, J-P
    Zheng, Y.
    Gwalani, B.
    Banerjee, R.
    MATERIALIA, 2020, 9
  • [24] Effect of Cold-Rolling Deformation on the Microstructural and Mechanical Properties of a Biocompatible Ti-Nb-Zr-Ta-Sn-Fe Alloy
    Cojocaru, Vasile Danut
    Dan, Alexandru
    Serban, Nicolae
    Cojocaru, Elisabeta Mirela
    Zarnescu-Ivan, Nicoleta
    Galbinasu, Bogdan Mihai
    MATERIALS, 2024, 17 (10)
  • [25] Plastic deformation properties of Zr-Nb-Ti-Ta-Hf high-entropy alloys
    Feuerbacher, M.
    Heidelmann, M.
    Thomas, C.
    PHILOSOPHICAL MAGAZINE, 2015, 95 (11) : 1221 - 1232
  • [26] Observing strain glass transition in Ti 33 Nb 15 Zr 25 Hf 25 O 2 high entropy alloy with Elinvar effect
    Zhang, Kaichao
    Wang, Kai
    Wang, Bin
    Lv, Chao
    Zheng, Jiaxing
    Li, Guanqi
    Fu, Yu
    Xiao, Wenlong
    Cai, Qingqing
    Nie, Xutao
    Shao, Yingfeng
    Hou, Huilong
    Zhao, Xinqing
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 168 (168): : 16 - 23
  • [27] Effect of cold rolling on the microstructure and texture evolution of as-cast (Ti55Zr25Nb10Ta10)99.5-Fe0.5 alloy
    Zareidoost, Amir
    Yousefpour, Mardali
    MATERIALS LETTERS, 2020, 259
  • [28] Microstructure and mechanical properties of hetero-designed Ti-25Nb-25Zr alloy fabricated by powder metallurgy route
    Sharma, B.
    Nagano, K.
    Kawabata, M.
    Ameyama, K.
    LETTERS ON MATERIALS, 2019, 9 (04): : 511 - 516
  • [29] Mechanical properties and thermally activated plasticity of the Ti30Zr25Hf15Nb20Ta10 high entropy alloy at temperatures 4.2-350 K
    Podolskiy, A. V.
    Tabachnikova, E. D.
    Voloschuk, V. V.
    Gorban, V. F.
    Krapivka, N. A.
    Firstov, S. A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 710 : 136 - 141
  • [30] High Temperature Mechanical Properties and Microstructure of Ti-Nb-Zr-Ta-O Biomedical Alloy
    Preisler, D.
    Strasky, J.
    Harcuba, P.
    Warchomicka, F. G.
    Janecek, M.
    ACTA PHYSICA POLONICA A, 2018, 134 (03) : 636 - 639